Cho đường tròn (O) đường kính AB, C là điểm cố định chính giữa cung AB, M là 1 điểm di động trên cung nhỏ AC. Trên MB lấy N sao cho BN=AM. Chứng minh rằng khi M di động thì đường thẳng qua N vuông góc với MB luuon đi qua 1 điểm cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Đường vuông góc BN tại N cắt tiếp tuyến tại A tại điểm E ta có:
\(\Delta AMB=\Delta BNE\left(g-c-g\right)\)
Vì: \(\widehat{MAB}=\widehat{NBE}\left(\text{cũng phụ }\widehat{MBA}\right)\)
AM = BN nên BA = BE = 2R không đổi nên E cố định
=> Đường vuông góc BN tại N qua điểm E cố định và tg ABE vuông cân tại B.
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
a) Do AMNP là hình vuông nên \(\widehat{QMB}=45^o\)
Lại có do C là điểm chính giữa của nửa đường tròn nên \(\widebat{CB}=90^o\Rightarrow\widehat{CMB}=45^o\)
(Góc nội tiếp)
Vậy thì \(\widehat{CMQ}=\widehat{CMB}+\widehat{BMQ}=45^o+45^o=90^o\)
Vậy CQ là đường kính hay C và Q đối xứng nhau qua O.
b) Ta thấyAMNP là hình vuông. MI là phân giác góc \(\widehat{AMB}\) nên \(\Delta MAI=\Delta MNI\left(c-g-c\right)\Rightarrow\widehat{MAI}=\widehat{MNI}\)
Lại có \(\widehat{MAI}=\widehat{IAM}\) nên \(\widehat{MNI}=\widehat{IAM}\)
Xét tứ giác AINB có \(\widehat{MNI}=\widehat{IAM}\) nên AINB là tứ giác nội tiếp (góc ngoài tại đỉnh bằng góc đối diện)