K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

a/

$x+y=xy$

$\Leftrightarrow xy-x-y=0$

$\Leftrightarrow x(y-1)-(y-1)=1$

$\Leftrightarrow (y-1)(x-1)=1$

Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:

TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)

TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)

 

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

b/

$5xy-2y^2-2x^2=-2$

$\Leftrightarrow 2x^2-5xy+2y^2=2$

$\Leftrightarrow (2x-y)(x-2y)=2$

Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$

$\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2$

$\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1$

$\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1$

$\Rightarrow x=-1; y=0$

AH
Akai Haruma
Giáo viên
26 tháng 8 2024

Lời giải:

$5xy-2y^2-2x^2=-2$

$\Rightarrow 2x^2+2y^2-5xy=2$

$\Rightarrow (2x-y)(x-2y)=2$

Với $x,y$ là số nguyên thì $2x-y, x-2y\in\mathbb{Z}$. Mà tích của hai số là 2 nên ta xét các TH sau:

TH1: $2x-y=1, x-2y=2\Rightarrow x=0; y=-1$

TH2: $2x-y=-1, x-2y=-2\Rightarrow x=0; y=1$

TH3: $2x-y=2, x-2y=1\Rightarrow x=1; y=0$

TH4: $2x-y=-2, x-2y=-1\Rightarrow x=-1; y=0$

NV
18 tháng 2 2020

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2y^2-3xy+\frac{9}{4}\right)+\frac{39}{4}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(xy-\frac{3}{2}\right)^2+\frac{39}{4}=0\)

Vế trái luôn dương nên ko tồn tại x;y thỏa mãn, chắc bạn ghi ko đúng đề bài

12 tháng 3 2017

Bạn viết rõ ra đi, khó nhìn lắm

12 tháng 3 2017

Mình viết lại cho dễ đọc.

a) A+ x2+4xy + x2- y2 = 2y +3xy- 5x2y +5x2y + 2x2y2

b) A- ( -2 x3) -y2+ 32x2- 4xy - y = 10z2 + y2z2

c) A= -2x + 5xy - 3x2y + 2x2y2 - 2 y2x

B= xy- 3x2y+ 2x2y + 2x2y2 - 2- y2x

1 tháng 6 2024

Có sai không bạn

24 tháng 2 2018

Có 2x^2 - 5xy + 2y^2 

      = 2x^2 - 4xy - xy + 2y^2

      = ( 2x^2 - 4xy + 2y^2 ) - xy 

      = 2( x + y )^2 - xy