K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

b: Xét (O) có

ΔAEH nội tiếp

AH là đường kính

Do đó; ΔAEH vuông tại E

=>HE\(\perp\)AE tại E

=>HE\(\perp\)AB tại E

Xét (O) có

ΔAFH nội tiếp

AH là đường kính

Do đó; ΔAFH vuông tại F

=>HF\(\perp\)FA tại F

=>HF\(\perp\)AC tại F

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

c: Ta có: ΔHEB vuông tại E

mà EM là đường trung tuyến

nên EM=HM

=>\(\widehat{MHE}=\widehat{MEH}\)

mà \(\widehat{MHE}=\widehat{ACB}\)(hai góc đồng vị, HE//AC)

nên \(\widehat{MEH}=\widehat{ACB}\)

Ta có: AEHF là hình chữ nhật

=>\(\widehat{FEH}=\widehat{FAH}\)

mà \(\widehat{FAH}=\widehat{ABC}\left(=90^0-\widehat{HCA}\right)\)

nên \(\widehat{FEH}=\widehat{ABC}\)

\(\widehat{MEF}=\widehat{MEH}+\widehat{FEH}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

Vì AEHF là hình chữ nhật

nên AEHF nội tiếp đường tròn đường kính AH và EF

=>EF là đường kính của (O)

Xét (O) có

EF là đường kính

EM\(\perp\)EF tại E

=>EM là tiếp tuyến của (O)

1: Xét ΔMNP vuông tại M có MH là đường cao

nên MH^2=HN*HP; MN^2=NH*NP; PM^2=PH*PN

=>MH=căn 3,6*6,4=4,8cm; MN=căn 3,6*10=6cm; PM=căn 6,4*10=8cm

2: MK=8/2=4cm

Xét ΔMNK vuông tại M có tan MNK=MK/MN=4/6=2/3

nên \(\widehat{MNK}\simeq33^041'\)

3: ΔMNK vuông tại M có MF là đường cao

nên NF*NK=NM^2

ΔMNP vuông tại M có MH là đường cao

nên NH*NP=NM^2

=>NF*NK=NH*NP

25 tháng 11 2023

Chọn đáp án B

25 tháng 11 2023

Câu 3 

3 tháng 10 2023

a) \(\sqrt[]{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(\Leftrightarrow\sqrt[]{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-\left(x^2+2x+1\right)+5\)

\(\Leftrightarrow\sqrt[]{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\sqrt[]{3\left(x+1\right)^2+4}\ge2,\forall x\in R\\\sqrt[]{5\left(x+1\right)^2+9}\ge3,\forall x\in R\end{matrix}\right.\)

\(\Rightarrow VT=\sqrt[]{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge5,\forall x\in R\)

\(VP=-\left(x+1\right)^2+5\le5,\forall x\in R\)

Dấu "=" xảy ra thì \(VT=VP=5\)

\(\left(1\right)\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy nghiệm của phương trình đã cho là \(x=-1\)

19 tháng 11 2023

a: ΔOHB cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)HB

I là trung điểm của HB

=>\(IH=IB=\dfrac{HB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

ΔOIB vuông tại I

=>\(OB^2=OI^2+IB^2\)

=>\(OB^2=3^2+4^2=25\)

=>OB=5(cm)

=>R=5(cm)

Xét tứ giác MAOI có

\(\widehat{MAO}+\widehat{MIO}=90^0+90^0=180^0\)

=>MAOI là tứ giác nội tiếp đường tròn đường kính MO

Tâm là trung điểm của MO

b: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó; ΔAHB vuông tại H

=>AH\(\perp\)HB tại H

=>AH\(\perp\)MB tại H

Xét ΔMAB vuông tại A có AH là đường cao

nên \(MA^2=MH\cdot MB\)

c: Xét (O) có

MA,MK là tiếp tuyến

Do đó: MA=MK

mà OA=OK

nên MO là đường trung trực của AK

\(MA^2=MH\cdot MB\)

MA=MK

Do đó: \(MK^2=MH\cdot MB\)

=>\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)

Xét ΔMKB và ΔMHK có

\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)

\(\widehat{KMB}\) chung

Do đó: ΔMKB đồng dạng với ΔMHK

=>\(\widehat{MBK}=\widehat{MHK}\)

a: Vì y=ax+5//y=2x nên ta có:

\(\left\{{}\begin{matrix}a=2\\b< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=2\\5< >0\left(đúng\right)\end{matrix}\right.\)

=>a=2

b: Thay x=-1 và y=3 vào y=x+b, ta được:

\(b-1=3\)

=>b=1+3=4

Vậy: b=4

c: (d1): y=2x+5

(d2): y=x+4

loading...

c: tọa độ điểm C là:

\(\left\{{}\begin{matrix}2x+5=x+4\\y=x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-x=4-5\\y=x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=-1+4=3\end{matrix}\right.\)

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=0\end{matrix}\right.\)

Tọa độ B là:

\(\left\{{}\begin{matrix}y=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=0-4=-4\end{matrix}\right.\)

vậy:B(-4;0); C(-5/2;0); A(-1;3)

d: \(BC=\sqrt{\left(-\dfrac{5}{2}+4\right)^2+\left(0-0\right)^2}=1,5\)

\(BA=\sqrt{\left(-1+4\right)^2+\left(3-0\right)^2}=\sqrt{3^2+3^2}=3\sqrt{2}\)

\(AC=\sqrt{\left(-\dfrac{5}{2}+1\right)^2+\left(0-3\right)^2}=\sqrt{\left(-1,5\right)^2+\left(-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)

 

Chu vi tam giác ABC là: 

\(C_{ABC}=AB+BC+AC=1,5+3\sqrt{2}+\dfrac{3\sqrt{5}}{2}\)

Xét \(\Delta\)ABC có 

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{18+11,25-2,25}{2\cdot3\sqrt{2}\cdot\dfrac{3\sqrt{5}}{2}}=\dfrac{27}{9\sqrt{10}}=\dfrac{3}{\sqrt{10}}\)

=>\(sinBAC=\sqrt{1-cos^2BAC}=\dfrac{1}{\sqrt{10}}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot3\sqrt{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot\dfrac{1}{\sqrt{10}}=\dfrac{9}{4}\)

20 tháng 4 2023

Bài 1

1)\(K+H_2O\xrightarrow[]{}KOH\)(phản ứng hoá hợp)

3)\(Fe_2O_3+3H_2\xrightarrow[]{t^0}2Fe+3H_2O\)(phản ứng thế)

4)\(4Fe+3O_2\underrightarrow{t^0}2Fe_2O_3\)(phản ứng hoá hợp)

5)\(2Cu+O_2\xrightarrow[]{t^0}2CuO\)(phản ứng hoá hợp)

6)\(Na+H_2O\xrightarrow[]{}NaOH+H_2\)(phản ứng thế)

7)\(P_2O_5+3H_2O\xrightarrow[]{}2H_3PO_4\)(phản ứng hoá hợp)

8)\(SO_3+H_2O\xrightarrow[]{}H_2SO_4\)(phản ứng hoá hợp)

9)\(2H_2+O_2\xrightarrow[]{t^0}2H_2O\)(phản ứng hoá hợp)

10)\(Zn+2HCl\xrightarrow[]{}ZnCl_2+H_2\)(phản ứng thế)

 

21 tháng 4 2023

sửa tí

1)\(2K+2H_2O\xrightarrow[]{}2KOH+H_2\)(phản ứng thế)

3 tháng 11 2023

Đề bài không rõ ràng, em liên hệ người ra đề xem vẽ đồ thị đường thẳng nào? Vì đường thẳng đề cho có a chưa biết

2 tháng 10 2023

\(\sqrt{x-4\sqrt{x-4}}=1\) (ĐKXĐ: \(x\ge4\))

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}\right)^2-2\cdot\sqrt{x-4}\cdot2+2^2}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}-2\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-4}-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}-2=1\\\sqrt{x-4}-2=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=3\\\sqrt{x-4}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=9\\x-4=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=13\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{13;5\right\}\).

#\(Toru\)

27 tháng 2 2023

.....

 

1 tháng 3 2023

1. Dành nhiều thời gian trò chuyện cùng nhau

2. Ăn tối chung

3. Cùng nhau làm việc nhà

5. Cha mẹ biết lắng nghe ý kiến con cái

4.  Lên kế hoạch đi chơi khi có thể
6. Bình đẳng, tôn trọng lẫn nhau

7. Tạo sự đồng thuận giữa cha mẹ và con cái

8. Giúp đỡ, chia sẻ mọi khó khăn trong cuộc sống cùng nhau

....