chứng tỏ rằng mỗi số lẻ là hiệu của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n; n+1 là hai số tự nhiên liên tiếp
Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)
Nếu n lẻ => 2n chẵn => 2n+1 lẻ
Nếu n chẵn => 2n chẵn => 2n+1 lẻ
=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp
(n+1)2−n2=n2+2n+1−n2=2n+1.Nếu n lẻ => 2n chẵn => 2n+1 lẻNếu n chẵn => 2n chẵn => 2n+1 lẻ=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp Đúng 0
Ơ , mình giải lộn nhỉ?
Giải
Số tự nhiên đầu có dạng: 2k + 1 , số tiếp theo dạng 2k + 2
Vậy tổng trên có dạng là:
2k + 1 + 2k + 2 = 4k + 3 = 3(k + 1)
Vì 3(k + 1) là số lẻ
Ta có ĐPCM
Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d
\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d
\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d
\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2
Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1
Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
Gọi 2 số tự nhiên lẻ là a và a+2, ƯC(a,a+2)=d
=>a chia hết cho d( vì a lẻ=>d lẻ)
a+2 chia hết cho d
=>a+2-a chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Vì d lẻ
=>d=1
=>ƯC(a,a+2)=1
=>a và a+2 là 2 số nguyên tố cùng nhau
=>ĐPCM
a.
ọi số thứ nhất là x, số thứ 2 là x + 1
Có x . (x +1) = 111222
<=> x² + x = 111222
Cộng cả 2 vế với 1/4, ta có
x² + x + 1/4 = 111222,25
<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức)
<=> (x + 1/2)² = 111222,25
<=> x + 1/2 = 333,5
<=> x = 333
Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222
Còn lại mỏi tay quá
Gọi \(n;n+1\) là 2 số tự nhiên liên tiếp
Ta có :
\(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1\)
+) n chẵn => 2n chẵn => 2n + 1 lẻ
+) n lẻ => 2n chẵn => 2n + 1 lẻ
Vậy...