Hình chữ nhật ABCD có 5 lần chiều dài =8 lần chiều rộng và có chu vi là 52 m . Trên các cạnh AB,BC,CD,DA lần lượt lấy các điểm chính giữa M,N,P,Q. Tính diện tích MNPQ ?
P/s: Giúp mình vs, ai đúng và nhanh mình tick cho !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
AQ = AD - DQ = AD - \(\dfrac{3}{4}\)AD = \(\dfrac{1}{4}\)AD
SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{4}\)AD = \(\dfrac{1}{16}\)SABCD
SBMN = \(\dfrac{1}{2}\)MB\(\times\)BN = \(\dfrac{1}{2}\)\(\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{8}\)SABCD
SCMN = \(\dfrac{1}{2}\)CN\(\times\)CP = \(\dfrac{1}{2}\times\dfrac{1}{2}\)BC \(\times\) \(\dfrac{2}{3}\)CD = \(\dfrac{1}{6}\)SABCD
DP = DC - CP = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC
SDPQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\times\)DC \(\times\) \(\dfrac{3}{4}\)AD = \(\dfrac{1}{8}\)SABCD
Diện tích của tứ giác MNPQ là:
288 \(\times\)( 1 - \(\dfrac{1}{16}\) - \(\dfrac{1}{8}-\dfrac{1}{6}-\dfrac{1}{8}\)) = 150 (cm2)
ĐS...
Hình tớ vẽ hơi xấu, bạn thông cảm nhé.
Ta có \(S\Delta AMQ=\dfrac{1}{2}.AM.AQ=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{3}AD\)
\(=\dfrac{1}{12}.288=24\left(cm^2\right)\)
\(S\Delta MBN=\dfrac{1}{2}MB.BN=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{4}BC\)
\(=\dfrac{1}{16}.288=18\left(cm^2\right)\)
\(S\Delta QDP=\dfrac{1}{2}QD.DP=\dfrac{1}{2}.\dfrac{2}{3}AD.\dfrac{2}{3}DC\)
\(=\dfrac{2}{9}.288=64\left(cm^2\right)\)
\(S\Delta NPC=\dfrac{1}{2}.NC.CP=\dfrac{1}{2}.\dfrac{3}{4}BC.\dfrac{1}{3}.DC\)
\(=\dfrac{1}{8}.288=36\left(cm^2\right)\)
\(S_{MNPQ}=288-36-64-18-24=146\left(cm^2\right)\)
DQ + QA = DA ⇒ QA = DA - DQ = DA - \(\dfrac{2}{3}\)DA = \(\dfrac{1}{3}\)DA
SAMQ = \(\dfrac{1}{3}\)SADM( Vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AD và AQ = \(\dfrac{1}{3}\)AD)
SADM = \(\dfrac{1}{2}\)SABD(vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AB và AM = \(\dfrac{1}{2}\)AB)
SABD = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)
⇒SAMQ = \(\dfrac{1}{3}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{1}{12}\)= 24 (cm2)
SDPQ = \(\dfrac{2}{3}\)SADP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy AD và DQ = \(\dfrac{2}{3}\)DA)
DP = DC - CP = DC - \(\dfrac{1}{3}\)DC = \(\dfrac{2}{3}\)DC
SADP = \(\dfrac{2}{3}\)SACD(Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy DC và DP = \(\dfrac{2}{3}\) DC)
SACD = \(\dfrac{1}{2}\)SABCD
⇒SDPQ = \(\dfrac{2}{3}\times\dfrac{2}{3}\times\)\(\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{2}{9}\)= 64 (cm2)
CN = BC - BN = BC - \(\dfrac{1}{4}\)BC = \(\dfrac{3}{4}\)BC
SCNP = \(\dfrac{3}{4}\)SCBP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{3}{4}\)BC)
SCBP = \(\dfrac{1}{3}\)SBCD(vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đấy CD và CP = \(\dfrac{1}{3}\) CD)
SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
⇒SCNP = \(\dfrac{3}{4}\times\dfrac{1}{3}\times\dfrac{1}{2}\) SABCD = 288 \(\times\) \(\dfrac{1}{8}\) = 36 (cm2)
SBMN = \(\dfrac{1}{4}\)SBCM (Vì hai tam giác có chung đường cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{1}{4}\)BC)
SBCM = \(\dfrac{1}{2}\)SABC(Vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM =\(\dfrac{1}{2}\)AB)
SABC = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)
⇒ SBMN = \(\dfrac{1}{4}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\)\(\dfrac{1}{16}\) = 18 (cm2)
SMNPQ = SABCD - (SAMQ +SDPQ+SCNP+SBMN)
Diện tích của MNPQ là:
288 - (64 + 24 + 36 + 18) = 146 (cm2)
Đáp số: 146 cm2
Ta thấy rằng \(\dfrac{BN}{BC}=\dfrac{AQ}{AD}\), mà \(BC=AD\) nên \(BN=AQ\), cũng có nghĩa ABNQ và CDQN là các hình chữ nhật. Ta kẻ MH và PK vuông góc với QN. Khi đó \(S_{MNPQ}=S_{MNQ}+S_{PNQ}\)
\(=\dfrac{1}{2}\times PQ\times MH+\dfrac{1}{2}\times PQ\times PK\)
\(=\dfrac{1}{2}\times PQ\times\left(MH+PK\right)\)
\(=\dfrac{1}{2}\times AB\times BC\) (do \(PQ=AB\) và \(MH+PK=BC\))
\(=\dfrac{1}{2}\times S_{ABCD}\)
\(=\dfrac{1}{2}\times324=162\left(cm^2\right)\)
HD:
Tính diện tích các tam giác vuông: AMQ; MBN; NCP và PDQ
Lấy diện tích hình chữ nhật ABCD trừ đi tổng diện tích 4 tam giác vuông trên sẽ được diện tích hình tứ giác MNPQ
SAMQ = \(\dfrac{1}{3}\)SABQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{1}{3}\)ABQ)
AQ = DA - QD = DA - \(\dfrac{1}{3}\)DA = \(\dfrac{2}{3}\)DA
SABQ = \(\dfrac{2}{3}\)SABD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và QA = \(\dfrac{2}{3}\)DA)
SABD = \(\dfrac{1}{2}\) SABCD (vì ABCD là hình chữ nhật)
SAMQ = \(\dfrac{1}{3}\)\(\times\)\(\dfrac{2}{3}\)\(\times\)\(\dfrac{1}{2}\) \(\times\) SABCD = 162 \(\times\) \(\dfrac{1}{9}\) = 18 (cm2)
SBMN = \(\dfrac{2}{3}\)SBCM (vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{2}{3}\)BC)
BM = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB
SBCM = \(\dfrac{2}{3}\)SABC ( vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{2}{3}\)AB)
SABC = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)
SBMN = \(\dfrac{2}{3}\times\dfrac{2}{3}\) \(\times\) \(\dfrac{1}{2}\)SABCD = 162 \(\times\) \(\dfrac{2}{9}\) = 36 (cm2)
CN = BC - BN = BC - \(\dfrac{2}{3}\)BC = \(\dfrac{1}{3}\)BC
SPCN = \(\dfrac{1}{3}\)SBPC( vì hai tam giác có cùng chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{1}{3}\)BC
SPBC = \(\dfrac{2}{3}\)SBCD (vì hai tam giác có cùng chiều cao hạ từ đỉnh B xuống đáy CD và CP = \(\dfrac{2}{3}\)CD)
SBCD = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)
SPCN = \(\dfrac{1}{3}\times\dfrac{2}{3}\times\dfrac{1}{2}\)SABCD = 162\(\times\)\(\dfrac{1}{9}\) = 18(cm2)
DP = DC - CP = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC
SDPQ = \(\dfrac{1}{3}\)SDCQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy DC và DP = \(\dfrac{1}{3}\)DC)
SDCQ = \(\dfrac{1}{3}\)SACD (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AD và DQ = \(\dfrac{1}{3}\)AD)
SADC = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)
SDPQ = \(\dfrac{1}{3}\times\dfrac{1}{3}\times\dfrac{1}{2}\)SABCD = 162 \(\times\) \(\dfrac{1}{18}\) = 9 (cm2)
SMNPQ = SABCD - (SDPQ + SPCN + SBMN + SAQM)
SMNPQ = 162 - (9 + 18 + 36 + 18) = 81 (cm2)
Đáp số : 81 cm2
Số viên bi Bình có là:
\(viên bi)
Tổng số viên bi của Bình và An là:
(viên bi)
Trung bình cộng số viên bi của 3 bạn là:
(viên bi)
Số viên bi của Thịnh là:
(viên bi)
Đáp số: ...
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Gọi chiều dài cạnh ngắn hình chữ nhật là BC = AD = x => cạnh dài hình chữ nhật là AB = CD = 8x
Vì ABCD là hình chữ nhật, các điểm M,N,P,Q là các điểm chính giữa các cạnh AB,BC,CD,DA => Tứ giác M,N,P,Q là hình thoi
=> Diện tích MNPQ = 1/2*(QN*MP) = 1/2*(AB*BC) = 1/2*(8x*x) = 4x^2
Đáp số: 4x^2