K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1

a.

Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C

\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)

Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)

\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)

\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)

\(\Rightarrow\Delta ABD\) cân tại B

b.

\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)

\(\Rightarrow BE\) là đường cao trong tam giác BAD

Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến

\(\Rightarrow E\) là trung điểm AD

Lại có O là trung điểm AB

\(\Rightarrow OE\) là đường trung bình tam giác ABD

\(\Rightarrow OE||BD\)

NV
13 tháng 1

c.

Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)

\(\Rightarrow I\) là trực tâm tam giác ABD

\(\Rightarrow DI\) là đường cao thứ 3

\(\Rightarrow DI\perp AB\)

d.

Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)

\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)

\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)

\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)

Xét tam giác vuông ABE có:

\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)

15 tháng 11 2023

loading...  loading...  loading...  loading...  

b: Xét ΔBHA có

BD vừa là đường cao, vừa là phân giác

=>ΔBHA cân tại B

=>D là trung điểm của AH

góc EAD=1/2*sđ cung AD

góc FAD=góc FBC=1/2*sđ cung DC

mà sđ cung AD=sđ cung DC

nên góc EAD=góc FAD

=>AD là phân giác của góc EAF

=>D là trung điểm của EF

Xét tứ giác AEHF có

D là trung điểm chung của AH và EF

AH vuông góc EF

=>AEHF là hình thoi

a: góc ADB=1/2*180=90 độ

=>BD vuông góc AH

góc ACB=1/2*180=90 độ

=>AC vuông góc HB

góc HDF+góc HCF=180 độ

=>HDFC nội tiếp

16 tháng 11 2022

a:góc ABD=góc DCA

góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

góc FAD=góc CAD

=>góc ABD=góc CBD

=>BD là phân giác của góc ABE

mà góc ADB=90 độ

nên BD là đường cao

=>ΔBAE cân tại B

b: Xét ΔEAB có

AC,BD là các đường cao

AC cắt BD tại K

Do đó: K là trực tâm

=>EK vuông góc với BA

c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác

nên ΔAKF cân tại A

=>góc AKF=góc AFK=góc KFE

=>AK//FE

Xét tứ giác AKEF có

AK//FE

AF//KE

KE=KA

Do đó: AKEF là hình thoi

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi