Tính giá trị của P=(a^2+b)-(2a^2+b)+2(ab+2021b)
Mọi người giúp mình nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)
\(P=a^2+b-2a^2+b+2ab+4042\)
\(P=-a^2+2ab+4042\)
\(P=-a\left(a-2b\right)+4042\)
Để cho: \(a-2b=2021\)
\(\Rightarrow P=-a.2021+4042\)
\(P=-2021a+4042\)
Vậy: \(P=-2021a+4042\)
\(P=\left(a^2+b\right)-\left(2a^2+b\right)+2\left(ab+2021\right)\)
\(=a^2+b-2a^2-b+2ab+4042\)
\(=-a^2+2ab+4042\)
\(=-a\left(a-2b\right)+4042\)
Đề cho \(a-2b=2021\)
\(\Rightarrow P=-a.2021+4042\)
\(=-2021a+4042\)
Vậy \(P=-2021a+4042\)
Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{a}{4}=\frac{c}{9}\)
Quy đồng : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{18};a^3+b^3+c^3=-1009\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{18};\frac{a^3+b^3+c^3}{8^3+12^3+18^3}=\frac{-1009}{8072}=-\frac{1}{8}\)
\(\Rightarrow\frac{a}{8}=-\frac{1}{8}\Rightarrow a=-1\)
\(\Rightarrow\frac{b}{12}=-\frac{1}{8}\Rightarrow b=-\frac{3}{2}\)
\(\Rightarrow\frac{c}{18}=-\frac{1}{8}\Rightarrow c=-\frac{9}{4}\)
a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)
A= /x+2/+/x-3/
=/x+2/+/3-x/
Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/
=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A
Vậy GTNN của A là 5 x=-2 hoặc x=3
b)GTNN của B là 9
a) Ta có: /x - 3/ = /3 - x/
=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/
Mà /x + 2 + 3 - x/ = /5/ = 5
=>A lớn hơn hoặc bằng 5
Đẳng thức xảy ra khi: (x + 2)(3 - x)=0
=>x = -2 hoặc x = 3
Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5
P= -a^2 + 4042b