Cho đường tròn tâm O bán kính bằng 3 cm và điểm A Trên đường tròn trên tiếp tuyến tại A với đường tròn qua điểm B sao cho OB = 6 cm tia AB cắt đường tròn tâm O tại C Tính số đo các cung AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)
=>\(\widehat{AOC}=45^0\)
=>\(sđ\left(OA;OC\right)=45^0\)
b: Số đo cung AC nhỏ là:
\(sđ\stackrel\frown{AC}=45^0\)
Số đo cung AC lớn là:
3600-450=3150
OB=căn18
b> Xét 2 tam giác bằng nhau đó là tam giác OAB=BCO là ra 2 góc cần xét
ta có tam giác AOC cân và OH là đường cao nên cũng là đường phân giác =>OAH=HOC
xét 2 tam giác OAB và tam giÁC BCO có OA=OB (bán kính )AOH=HOC(cmt) OB CHUNG => AOB=BCO(C-G-C)=>GÓC OAB=BCO hay OC vuông BC=>...............
AC=3
Lời giải:
a. Vì $AC$ là tiếp tuyến của $(O)$ nên $AC\perp OA$ hay $AC\perp AB$
Do đó tam giác $ABC$ vuông tại $A$
$AB=2R=12$ (cm)
$AC= 5$ (cm)
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)
b.
$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)
$\Rightarrow AM\perp MB$ hay $AM\perp BC$
Áp dụng hệ thức lượng trong tam giác vuông với tam giác vuông $ABC$, đường cao $AM$
$\frac{1}{AM^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{5^2}+\frac{1}{12^2}$
$\Rightarrow AM=\frac{60}{13}$ (cm)
Áp dụng định lý Pitago:
$MC=\sqrt{AC^2-AM^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm)
$BM=BC-MC=13-\frac{25}{13}=\frac{144}{13}$ (cm)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
a: góc EAB=1/2*90=45 độ
=>góc AEB=45 độ
b: góc EFD=góc FAB+góc FBA=90 độ+góc DAB
góc ECD+góc ACD=180 độ
=>góc ECD=góc DBA
=>góc EFD+góc ECD=180 độ
=>CDFE nội tiếp
Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)
Số đo cung AC lớn là:
\(360-60=300^0\)