Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm nghiệm của các đa thức: e) `\(^{ }x^2\)-4x+3
f) \(2x^2\) −5x+3.
e; \(x^2\) - 4\(x\) + 3 = 0
\(x^2\) - \(x\) - 3\(x\) + 3 = 0
(\(x^2\) - \(x\)) - (3\(x\) - 3) = 0
\(x\).(\(x\) - 1) - 3.(\(x\) - 1) = 0
(\(x\) - 1).(\(x\) - 3) = 0
\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; 3}
f; 2\(x^2\) - 5\(x\) + 3
2\(x^2\) - 2\(x\) - 3\(x\) + 3
2\(x\).(\(x\) - 1) - 3.(\(x\) - 1) = 0
(\(x\) - 1).(2\(x\) - 3) = 0
\(\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; \(\dfrac{3}{2}\)}
e; \(x^2\) - 4\(x\) + 3 = 0
\(x^2\) - \(x\) - 3\(x\) + 3 = 0
(\(x^2\) - \(x\)) - (3\(x\) - 3) = 0
\(x\).(\(x\) - 1) - 3.(\(x\) - 1) = 0
(\(x\) - 1).(\(x\) - 3) = 0
\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; 3}
f; 2\(x^2\) - 5\(x\) + 3
2\(x^2\) - 2\(x\) - 3\(x\) + 3
2\(x\).(\(x\) - 1) - 3.(\(x\) - 1) = 0
(\(x\) - 1).(2\(x\) - 3) = 0
\(\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {1; \(\dfrac{3}{2}\)}