K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

2. Giả sử 13n+3=y213n+3=y2   (1)

  Đặt y=13t+ry=13t+r với t,r∈Z;−6<r<6t,r∈Z;−6<r<6

Từ (1) ta có 13(n+1)−10=(13t+r)213(n+1)−10=(13t+r)2 (2)

⇒r2+10⋮13⇒r=±4⇒r2+10⋮13⇒r=±4

Từ (2) ta được n=13t2±8t+1n=13t2±8t+1  với t∈Z

15 tháng 7 2019

Đặt \(13n+3=x^2\)

\(\Leftrightarrow13n-13=x^2-16\)

\(\Leftrightarrow13\left(n-1\right)=\left(x+4\right)\left(x-4\right)\)

Mà 13 là số nguyên tố nên \(\orbr{\begin{cases}x+4⋮13\\x-4⋮13\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=13k-4\\x=13k+4\end{cases}}\)

Sau đó thay x vào tìm n

14 tháng 2 2016

Thử với n=1; 2; 3; 4 ta chọn n = 1; 3

Với n > 4 => 1! + 2! + 3! + 1! + 2! + 3!+ ... +n! = 1! + 2! + 3! + 4! + 5!+ ... + n! = 33 + A0¯1! + 2! + 3!+ ... + n! = 1! + 2! + 3! + 4! + 5! +... + n! = 33 + A0¯(vì 5!; 6!; ... có tận cùng là 0) hay tổng này có tận cùng là 3 => Tổng này không phải là số chính phương vì không có số chính phương nào có tận cùng là 3 => lọai
Vậy n = 1; 3

14 tháng 2 2016

n = 15. Dãy số trên sẽ bằng 11838932

23 tháng 4 2018

1)7744=66 x 66

2)40,90 

3)Bó tay

3 tháng 1 2022

lolang

Không ai bt làm::(

 

4 tháng 1 2022

Ngồi hóng hóng

3 tháng 3 2023

vi n la stn co 2 c/s 

⇒   10≤n≤99

⇒  20≤2n≤198

⇒  21≤2n+1≤199

ma 2n+1 la scp 

2n+1ϵ 25;49;81;121;169

ta co bang 

2n+1 25   49    81        169  

n       12   24    40           84 

3n+1  37   73    121=112    153 

kl       L      C      C               L 

23 tháng 12 2015

ta có

\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)

\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Ta có

\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)

Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)

Từ (1) và (2)

=>\(\left(n-1\right)^2

=>A ko phải là số chình phương

30 tháng 12 2021

\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)

Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)

Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)

\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)

Vậy A là hợp số với \(n>1\)

Vậy \(n=1\)

30 tháng 12 2021

\(3,\)

Đặt \(A=n^4+n^3+1\)

\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)

Vậy \(n=2\)