K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2024

\(n^5+1⋮n^3+1\)

\(\Leftrightarrow n^5-n^3⋮n^3+1\)

\(\Leftrightarrow n^3\left(n^2-1\right)⋮n^3+1\)

Vì \(gcd\left(n^3,n^3+1\right)=1\) nên từ đây suy ra \(n^2-1⋮n^3+1\) (*)

Nếu \(n=1\) thì (*) thành \(0⋮2\) (thỏa mãn)

Nếu \(n\ge2\) thì (*) suy ra \(n^3+1\le n^2-1\) 

\(\Leftrightarrow f\left(n\right)=n^3-n^2+2\le0\)     (1)

Ta thấy \(f\left(n+1\right)-f\left(n\right)=\left(n+1\right)^3-\left(n+1\right)^2+2-n^3+n^2-2\)

\(=n^3+3n^2+3n+1-n^2-2n-1-n^3+n^2\)

\(=3n^2+n>0,\forall n\ge2\)

\(\Rightarrow f\left(n\right)\) là hàm số đồng biến trên \(ℕ_{\ge2}\) (cái này mình kí hiệu cho gọn thôi chứ bạn đừng viết vào bài làm nhé)

\(\Rightarrow f\left(n\right)\ge f\left(2\right)=6>0\)

Do đó (1) vô lý \(\Rightarrow n=1\) là giá trị duy nhất thỏa mãn ycbt.

 

NV
12 tháng 1 2024

\(\dfrac{n^5+1}{n^3+1}=\dfrac{\left(n+1\right)\left(n^4-n^3+n^2-n+1\right)}{\left(n+1\right)\left(n^2-n+1\right)}=\dfrac{n^4-n^3+n^2-n+1}{n^2-n+1}\)

\(=\dfrac{n^2\left(n^2-n+1\right)-\left(n-1\right)}{n^2-n+1}=n^2-\dfrac{n-1}{n^2-n+1}\)

Để \(n^5+1⋮n^3+1\Rightarrow\dfrac{n-1}{n^2-n+1}\in Z\)

- Với \(n=1\) thỏa mãn

- Với \(n>1\Rightarrow n^2-n>n^2-n=n\left(n-1\right)>n-1\)

\(\Rightarrow0< \dfrac{n-1}{n^2-n+1}< 1\) \(\Rightarrow\dfrac{n-1}{n^2-n+1}\notin Z\)

Vậy \(n=1\) là giá trị duy nhất thỏa mãn

3 tháng 5 2023

 \(A=\dfrac{n}{n+1}+\dfrac{2}{n+1}=\dfrac{n+2}{n+1}=\dfrac{n+1}{n+1}+\dfrac{2}{n+1}=1+\dfrac{2}{n+1}\)

Để A là số tự nhiên => \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\)

n+1-2-112
n-3-201
A0-1 (loại)32

Vậy \(n\in\left\{0;2;3\right\}\)

18 tháng 7 2023

Em muốn nhanh thì em chia nhỏ câu hỏi ra để nhiều người trợ giúp cùng một lúc như vậy hiệu quả cao, chi tiết và nhanh chóng em nhé.

20 tháng 2 2018

Ta có

2n+5  chia hết cho n-1

Tách 2n+5=2n-1+6

Vì 2n-1 đã chia hết cho n-1 nên 6 phải chia hết cho n-1

Suy ra n-1 thuộc ước của 6

Mà ước của 6=

là 1;-1;2;-2;3;-3;6;-6.

Rồi sau đo bạn thử n-1 với từng trường hợp

Thấy n nào nguyên tố thì đó là đáp an

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:
Để $n^4+n^3+1$ là scp $\Leftrightarrow A=4n^4+4n^3+4$ cũng phải là scp

Xét $A-(2n^2+n+1)^2=4n^4+4n^3+4-(2n^2+n+1)^2=-5n^2-2n+3\leq -5-2n+3=-2-2n<0$ với mọi $n\geq 1$

$\Rightarrow A< (2n^2+n+1)^2(1)$

Xét $A-(2n^2+n-1)^2=4n^4+4n^3+4-(2n^2+n-1)^2=3n^2+2n+3>0$ với mọi $n\geq 1$

$\Rightarrow A> (2n^2+n-1)^2(2)$

Từ $(1); (2)\Rightarrow (2n^2+n-1)^2< A< (2n^2+n+1)^2$
$\Rightarrow A=(2n^2+n)^2$
$\Rightarrow (4n^4+4n^3+4)=(2n^2+n)^2$
$\Leftrightarrow 4-n^2=0$

$\Rightarrow n=2$

 

9 tháng 12 2018

Bài 1 :

Lý luận chung cho cả 2 câu a) và b) :

Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0

a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

3 tháng 2 2023

số số hạng của tổng trên là:((2n-1)-1):2+1=n (số hạng)

Tổng m là:((2n-1)+1).n:2=n.n=n^2 là 1 số chính phương

Vậy m là 1 số chính phương 

 

19 tháng 7 2020

a) Số số hạng là : \(\frac{\left(4n-4\right)}{4}+1=\frac{4\left(n-1\right)}{4}+1=n-1+1=n\)

Tổng của dãy trên là : \(\frac{\left(4+4n\right)\cdot n}{2}=2n\left(n+1\right)\)

Ta có : \(2n\left(n+1\right)=2964\)

=> \(n\left(n+1\right)=2964:2=1482=38\cdot39\)

=> n = 38

b) \(\frac{1}{2}+1+\frac{3}{2}+...+\frac{n}{2}=33\)

=> \(\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+...+\frac{n}{2}=33\)

=> \(\frac{1+2+3+...+n}{2}=33\)

=> \(1+2+3+...+n=66\)

Số số hạng là : \(\left(n-1\right):1+1=n\)

Tổng : \(\frac{\left(1+n\right)\cdot n}{2}=\frac{n\left(n+1\right)}{2}\)

=> \(\frac{n\left(n+1\right)}{2}=66\)

=> \(n\left(n+1\right)=66\cdot2=132=11\cdot12\)

=> n = 11

P/S : K bt có đúng k nx

10 tháng 4 2018

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B