Cho tam giác abc, đường cao ah và trung tuyến am vẽ hi vuông góc ab, hk vuông góc ac, gọi n là điểm đối xứng của m qua ac
a,Chứng minh ah=ik
b,Chứng minh amcn là hình thoi?
c,abc phải có thêm điều gì để amcn là hình vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
c) Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành ( D/h 5 )
mà AB vuông góc EM
=> hbh AEBM là hình thoi ( D/h 3 )
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền)
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm)
Chu vi hình thoi AEBM:
2,5 . 4 =10 (cm)
a: Xét tứ giác AMHK có
góc AMH=góc AKH=góc KAM=90 độ
=>AMHK là hình chữ nhật
=>AH=MK
b: Xét ΔAHD có
AB vừa là đường cao, vừa là trung tuyến
nên ΔAHD cân tại A
=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE và AC là phân giác của góc HAE(2)
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
c: Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 dộ
=>BD vuông góc DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>goc AEC=90 độ
=>CE vuông góc ED(4)
Từ (3), (4) suy ra BD//CE
Bài này dễ bạn tự vẽ hình nha
a) \(\widehat{BAC}=1v\)
\(\widehat{AIH}=1v\)\(\left(HI\perp AC\right)\)
\(\widehat{AKH}=1v\)\(\left(HK\perp AB\right)\)
\(\Rightarrow\)\(AIHK-hcn\)
b) \(AD=BD\left(gt\right)\)
\(DM=DN\left(gt\right)\)
\(\Rightarrow\)\(AMBN-hbh\) (1 )
\(AM=\frac{BC}{2}\)( vì AM là đường trung tuyến của tam giác ABC vuông tại A )
\(BM=\frac{BC}{2}\left(gt\right)\)
\(\Rightarrow\)\(AM=BM\) (2 )
Từ ( 1 ) và ( 2 ) suy ra AMBN là hình thoi
a) Tứ giác AIHK có: \(\widehat{HKA}=\widehat{KAI}=\widehat{AIH}=90^0\)
\(\Rightarrow\)\(AIHK\)là hình chữ nhật
b) N là điểm đối xứng với M qua D
\(\Rightarrow\)DN = DM
Tứ giác AMBN có: DA = DB; DN = DM
\(\Rightarrow\)AMBN là hình bình hành (1)
\(\Delta ABC\)có: MB = MC; DA = DB
\(\Rightarrow\)MD là dường trung bình
\(\Rightarrow\)MD // AC
mà AC \(\perp AB\)
nên MD \(\perp AB\) (2)
Từ (1) và (2) suy ra: AMBN là hình thoi