Tìm ĐKXĐ
\(\dfrac{1}{x^2+y^2};\dfrac{x^2y+2x}{x^2-2x+1};\dfrac{5x+y}{x^2+6x+10};\dfrac{x+y}{\left(x+3\right)^2+\left(y-2\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đặt:z=\dfrac{1}{\sqrt{y}-3}\left(y\ge0;y\ne9\right)\\ \left\{{}\begin{matrix}x+2+\dfrac{2}{\sqrt{y}-3}=9\\2x+4-\dfrac{1}{\sqrt{y-3}}=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2z=9-2=7\\2x-z=8-4=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4z=14\\2x-z=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5z=10\\2x-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y}-3}=2\\x=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y}-6=1\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}=\dfrac{7}{2}\\x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\left(\dfrac{7}{2}\right)^2=\dfrac{49}{4}\\x=3\end{matrix}\right.\)
Anh giải hệ lun hi, chứ ĐKXĐ là: \(\left(y\ge0;y\ne9\right)\)
\(ĐKXĐ: \begin{cases} \sqrt{y}-3 \ne 0\\\sqrt{y}\ge0\end{cases} \Leftrightarrow \begin{cases} y\ne9\\y\ge0 \end{cases}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
ĐKXĐ:
\(x^2-x+1>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (luôn đúng)
Vậy hàm số xác định với mọi x thuộc R
\(Q=\left(\dfrac{x+1}{\left(x-1\right)^2}+\dfrac{1}{x-1}\right).\dfrac{x-1}{x}-\dfrac{2}{x-1}=\left(\dfrac{2}{x-1}\right)-\left(\dfrac{2}{x-1}\right)=0\)
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |2x+1|=3
=>x=1(loại); x=-2(nhận)
Khi x=-2 thì P=4/-3=-4/3
c: P=-1/2
=>x^2/x-1=-1/2
=>2x^2=-x+1
=>2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=1/2; x=-1
Điều kiện: x>2
P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)
P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) P= \(\dfrac{1}{4}\)
⇔\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)
⇔\(4\sqrt{x}-8=3\sqrt{x}\)
⇔\(\sqrt{x}=8\)
⇔x=64 (TM)
Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)
\(2sin\left(x+y\right)=sinx+siny\)
\(\Leftrightarrow2.2.sin\dfrac{x+y}{2}.cos\dfrac{x+y}{2}=2.sin\dfrac{x+y}{2}.cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2cos\dfrac{x+y}{2}=cos\dfrac{x-y}{2}\)
\(\Leftrightarrow2\left(cos\dfrac{x}{2}.cos\dfrac{y}{2}-sin\dfrac{x}{2}.sin\dfrac{y}{2}\right)=cos\dfrac{x}{2}.cos\dfrac{y}{2}+sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow cos\dfrac{x}{2}.cos\dfrac{y}{2}=3.sin\dfrac{x}{2}.sin\dfrac{y}{2}\)
\(\Leftrightarrow\left(sin\dfrac{x}{2}:cos\dfrac{x}{2}\right).\left(sin\dfrac{y}{2}:cos\dfrac{y}{2}\right)=\dfrac{1}{3}\)
\(\Leftrightarrow tan\dfrac{x}{2}.tan\dfrac{y}{2}=\dfrac{1}{3}\)
2sin(x+y)=sinx+siny2sin(x+y)=sinx+siny
⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2⇔2.2.sinx+y2.cosx+y2=2.sinx+y2.cosx−y2
⇔2cosx+y2=cosx−y2⇔2cosx+y2=cosx−y2
⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2⇔2(cosx2.cosy2−sinx2.siny2)=cosx2.cosy2+sinx2.siny2
⇔cosx2.cosy2=3.sinx2.siny2⇔cosx2.cosy2=3.sinx2.siny2
⇔(sinx2:cosx2).(siny2:cosy2)=13⇔(sinx2:cosx2).(siny2:cosy2)=13
⇔tanx2.tany2=13⇔tanx2.tany2=13
a: ĐKXĐ: \(x^2+y^2\ne0\)
=>\(\left[{}\begin{matrix}x^2\ne0\\y^2\ne0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
b: ĐKXĐ: \(x^2-2x+1\ne0\)
=>\(\left(x-1\right)^2\ne0\)
=>\(x-1\ne0\)
=>\(x\ne1\)
c: ĐKXĐ: \(x^2+6x+10\ne0\)
=>\(x^2+6x+9+1\ne0\)
=>\(\left(x+3\right)^2+1\ne0\)(luôn đúng)
d:ĐKXĐ: \(\left(x+3\right)^2+\left(y-2\right)^2\ne0\)
=>\(\left[{}\begin{matrix}x+3\ne0\\y-2\ne0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x\ne-3\\y\ne2\end{matrix}\right.\)