tìm số nguyên x thỏa mãn: (x + 2022)^2 = 64(x + 2015)^3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
DD
0
DD
0
TM
0
LN
1
24 tháng 12 2016
\(x^{2015}-\left(-42-2x\right)=6+x^{2015}\)
\(\Rightarrow-\left(-42-2x\right)=6\)
\(\Rightarrow42+2x=6\)
\(\Rightarrow2x=-36\)
\(\Rightarrow x=-18\)
Vậy \(x=-18\)
HH
1
WR
2
SM
0
WR
0
Lời giải:
Gọi $d=ƯCLN(x+2022, x+2015)$
$\Rightarrow (x+2022)-(x+2015)\vdots d$
$\Rightarrow 7\vdots d$
$\Rightarrow d=1$ hoặc $d=7$
Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau
$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau
$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:
$x+2015=1, (x+2022)^2=64$
$\Rightarrow x=-2014$ (tm)
Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.
Khi đó: $(7a)^2=64(7b)^3$
$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)
Vậy.......