K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 1

\(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}\) hữu hạn \(\Rightarrow f\left(3\right)=80\)

Sử dụng hẳng đẳng thức: \(a-b=\dfrac{a^4-b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{f\left(x\right)-80}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]}}{\left(x-3\right)\left(2x-5\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-80}{x-3}.\dfrac{1}{\left[\sqrt[4]{f\left(x\right)+1}+3\right]\left[\sqrt[]{f\left(x\right)+1}+9\right]\left(2x-5\right)}\)

\(=5.\dfrac{1}{\left(\sqrt[4]{80+1}+3\right)\left(\sqrt[]{80+1}+9\right)\left(2.3-5\right)}\)

8 tháng 1

Em đang tích cực học toán để hỏi anh một số dạng, mới đầu năm học em học về tìm tham số để phương trình lượng giác có nghiệm trên khoảng, ..., gần chục dạng cô cho làm mà khó quá, có những câu không làm được, nào em xem lại tờ đó có gì em nhờ anh giúp ạ! 

NV
22 tháng 3 2022

Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)

Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)

\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)

\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)

23 tháng 3 2022

em cảm ơn nhìu ạ<3

NV
24 tháng 3 2022

Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?

\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực

24 tháng 3 2022

dạ \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) ạ!

19 tháng 11 2023

a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)

\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)

b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)

nên hàm số tồn tại lim khi x=3

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)

2 tháng 2 2021

Dạng 0/0 một là phân tích đa thức thành nhân tử để rút gọn mẫu khỏi dạng 0/0. Hoặc là nhân liên hợp

a/ \(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-\dfrac{3}{2}\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x}{x^2}-\dfrac{3}{2x^2}}{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}}=0\)

b/ \(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(2x^2+x+1\right)\left[\left(\sqrt[3]{x+5}\right)^2+2\sqrt[3]{x+5}+4\right]}{x-3}\)

\(=\left(2.3^2+3+1\right)\left[\left(\sqrt[3]{3+5}\right)^2+2\sqrt[3]{3+5}+4\right]=...\)

bn nên đăng ở môn cần nha!

NV
27 tháng 1 2021

\(a=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2-2x-2\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{x^2-2x-2}{x-3}=\dfrac{3}{2}\)

Câu b bạn coi lại đề, là \(x\rightarrow-1^-\) hay \(x\rightarrow1^-\) (đúng như đề thì ko phải dạng vô định, cứ thay số rồi bấm máy)

\(c=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}\)

 \(=\lim\limits_{x\rightarrow3}\dfrac{1}{\left(x-1\right)\left(\sqrt[3]{\left(x+5\right)^2}+2\sqrt[3]{x+5}+4\right)}=\dfrac{1}{2.\left(4+4+4\right)}=...\)

27 tháng 1 2021

a/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1+\sqrt{3}\right)\left(x-1-\sqrt{3}\right)}{x-3}=....\)

Từ 2 câu kia lát tui làm, ăn cơm đã :D

NV
8 tháng 3 2022

Với FX580 hình như tính được luôn

Còn với mọi dòng máy thì: 

a. Nhập \(\dfrac{X^2+2X-3}{2X^2-X-1}\) và CALC với \(x=1,000000001\), máy cho kết quả \(\dfrac{4}{3}\)

b. Nhập \(\dfrac{\left|1-3X\right|}{3-X}\) và CALC với \(2,99999999\) (\(x\rightarrow3^-\) nên CALC với giá trị nhỏ hơn 3 1 chút xíu, nếu \(3^+\) thì sẽ CALC với giá trị lớn hơn 3 chút xíu)

Máy cho kết quả rất lớn, dấu dương, hiểu là \(+\infty\)

8 tháng 3 2022

dạ em cảm ơn thầy nhiều ạ!!

NV
5 tháng 3 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)

a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)

b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)

Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)

\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)

\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-x+x-\sqrt[3]{27x-54}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{6x-9-x^2}{\sqrt{6x-9}+x}+\dfrac{x^3-27x+54}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-\left(x-3\right)^2}{\sqrt{6x-9}+x}+\dfrac{\left(x-3\right)^2\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-1}{\sqrt{6x-9}+x}+\dfrac{\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x+6\right)}\)

\(=\dfrac{-\dfrac{1}{\sqrt{6\cdot3-9}+3}+\dfrac{3+6}{3^2+3\cdot\sqrt[3]{27\cdot3-54}+\sqrt[3]{\left(27\cdot3-54\right)^2}}}{3+6}\)

\(=\dfrac{-\dfrac{1}{3+3}+\dfrac{9}{9+3\cdot3+3^2}}{9}=\dfrac{-\dfrac{1}{6}+\dfrac{1}{3}}{9}=\dfrac{\dfrac{1}{6}}{9}=\dfrac{1}{54}\)

 

NV
7 tháng 1

Phương pháp đạo hàm ý em là định lý L'Hopital hả? Định lý L'Hopital là 1 phương pháp rất mạnh để giải các bài giới hạn dạng phân thức \(\dfrac{0}{0}\) hoặc \(\dfrac{\infty}{\infty}\), nhưng người ta hạn chế sử dụng khi xuất hiện căn thức (lý do là khi đạo hàm thì căn thức không những gọn đi mà còn "phình to" ra rất nhiều). Ưu điểm là nó khử dạng vô định rất nhanh chóng. Còn khi phân thức mà tử mẫu đều ko xuất hiện căn thức thì đó đúng là 1 pp mạnh tuyệt đối.

Định lý nó như sau: nếu \(f\left(x\right)\) và \(g\left(x\right)\) cùng tiến tới 0 (hoặc \(+\infty\) hoặc \(-\infty\)) khi \(x\rightarrow a\) nào đó thì:

\(\lim\limits_{x\rightarrow a}\dfrac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\dfrac{f'\left(x\right)}{g'\left(x\right)}\)

Bài này có cả căn bậc 3 nên đạo hàm ko được đẹp lắm. Tự hiểu là giới hạn nha, vì công thức latex gõ giới hạn hơi phức tạp, tốn thời gian lắm, gõ 1 biểu thức thôi thì lẹ gấp chục lần:

\(\dfrac{\sqrt[]{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}=\dfrac{\dfrac{3}{\sqrt[]{6x-9}}-\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}}}{x^2+3x-18+\left(x-3\right)\left(2x+3\right)}\)

Vậy là mất dạng vô định, thay số là xong.

Còn thêm bớt liên hợp thì khá đơn giản, do \(x\rightarrow3\) nên ta thay \(x=3\) vào 1 căn thức bất kì, ví dụ căn đầu, được \(\sqrt{6.3-9}=3\), vậy ta chỉ cần thêm bớt 3 vào tử số rồi liên hợp là được:

\(=\dfrac{\left(\sqrt[]{6x-9}-3\right)+\left(3-3\sqrt[3]{x-2}\right)}{\left(x-3\right)\left(x^2+3x-18\right)}\)