chứng minh \(a=2^{2^{2019}}+5\) là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:
\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)
Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho
+)Ta có:\(A=2019+2019^2+2019^3+2019^4+2019^5+2019^6\)
\(\Rightarrow A=\left(2019+2019^2\right)+\left(2019^3+2019^4\right)+\left(2019^5+2019^6\right)\)
\(\Rightarrow A=\left(2019+2019^2\right)+2019^2.\left(2019+2019^2\right)+2019^4.\left(2019+2019^2\right)\)
+)Ta lại có:20192 tận cùng là 1
=>2019+20192 tân cùng là 9+1=10
=>2019+20192\(⋮2\)
\(\Rightarrow\left(2019+2019^2\right)⋮2;2019^2.\left(2019+2019^2\right)⋮2;2019^4.\left(2019+2019^2\right)⋮2\)
\(\Rightarrow A⋮2\)
Vậy \(A⋮2\left(ĐPCM\right)\)
Chúc bn học tốt
A = 2019 + 20192 + 20193 + 20194 + 20195 + 20196
A = ( 2019 + 20192 ) + ( 20193 + 20194) + ( 20195 + 20196)
A = 1 . ( 2019 + 20192 ) + 20193 . (2019 + 20192 ) + 20195 . ( 2019 + 20192 )
A = 1 . 4 078 380 + 20193 . 4 078 380 + 20195 . 4 078 380
A = 4 078 380 . ( 1 + 20193 + 20195) \(⋮2\rightarrowĐPCM\)
# HOK TỐT #
A=5+52+53+....+52019
=> 5A=5(5+52+53+.....+52019)
=> 5A=52+53+54+....+52020
=> 5A-A=(52+53+54+....+52020)-(5+52+53+.....+52019)
=> 4A=52020-5
=> 4A+5=52020-5+5=52020
Vì 52020 chia hết cho 5 => 4A+5 là số chính phương (đpcm)
\(A=5+5^2+5^3+....+5^{2019}\)
\(5A=5^2+5^3+5^4+....+5^{2020}\)
\(5A-A=5^{2020}-5\)
=> 4A+5=52020-5+5=52020 = (51010)2
=> đpcm
Bạn có thể giải thích cho mình là tại sao \(\left(2019-3c\right)+\frac{1+3c}{2}+c=2019\frac{1}{2}-\frac{c}{2}\)
\(\left(2019-3c\right)+\frac{1+3c}{2}+c=2019-3c+\frac{1}{2}+\frac{3c}{2}+c=2019\frac{1}{2}-\left(3c-c-\frac{3c}{2}\right)=2019\frac{1}{2}-\frac{c}{2}\)
\(2^{2019}\) luôn là lũy thừa của số chẵn nên luôn chẵn, đặt \(2^{2019}=2k\)
\(\Rightarrow a=2^{2k}+5=4^k+5\)
\(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\)
\(\Rightarrow4^k+5\equiv0\left(mod3\right)\)
Hay \(a⋮3\), mà \(a>3\) nên a là hợp số
Dạ thầy ơi, dạ thầy chỉ cho em cái phần mod này được không ạ? Dạ em chưa hiểu lắm ạ