23 + x + 2x = 576.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\left(2x+1\right)^2=576\)
\(\left(2x+1\right)^2=\dfrac{576}{4}=144=12^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=12\\2x+1=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=11\\2x=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=-\dfrac{13}{2}\end{matrix}\right.\)
\(4\cdot(2x+1)^2=576\\\Rightarrow (2x+1)^2=576:4\\\Rightarrow(2x+1)^2=144\\\Rightarrow(2x+1)^2=(\pm12)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=12\\2x+1=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=11\\2x=-13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=-\dfrac{13}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\dfrac{13}{2};\dfrac{11}{2}\right\}\)
sửa đề :
2x + 2x+3 = 576
2x . 1 + 2x . 23 = 576
2x . ( 1 + 23 ) = 576
2x . 9 = 576
2x = 576 : 9
2x = 64
2x = 26
=> x = 6
\(2^{3+x}+2^x=576\)
\(\Rightarrow2^x\cdot2^3+2^x=576\)
\(\Rightarrow2^x\cdot\left(2^3+1\right)=576\)
\(\Rightarrow2^x\cdot\left(8+1\right)=576\)
\(\Rightarrow2^x\cdot9=576\)
\(\Rightarrow2^x=576:9\)
\(\Rightarrow2^x=64\)
\(\Rightarrow2^x=2^6\)
\(\Rightarrow x=6\)
Vậy $x=6$.
\(2^{3+x}+2^x=576.\)
\(2^3.2^x+2^x.1=576\)
\(2^x.\left(2^3+1\right)=576\)
\(2^x.9=576\)
\(2^x=576:9\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)