K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1

Để đi từ điểm tọa độ (0,0) đến tọa độ (n,m) thì cần n bước qua phải và m bước lên trên, nên cần tổng cộng \(m+n\) bước đi để đến đích.

Chọn m bước lên trên (trong tổng số \(m+n\) bước) có \(C_{m+n}^m\) cách

Còn lại n bước, chọn n cách sang phải, có \(C_n^n\) cách

Vậy tổng cộng có: \(C_{m+n}^m.C_n^n=C_{m+n}^n\) cách

NV
22 tháng 12 2020

Không gian mẫu: \(C_{10}^3=120\)

Ta có 8 dãy số thỏa mãn đề bài: (0;1;9);(0;2;8);(0;3;7);(0;4;6),(1;2;7);(1;3;6);(1;4;5);(2;3;5)

Xác suất:

\(P=\dfrac{8}{120}+\left(1-\dfrac{8}{120}\right).\dfrac{8}{119}+\left(1-\dfrac{8}{120}\right).\left(1-\dfrac{8}{119}\right).\dfrac{8}{118}=...\)

19 tháng 7 2021

Thầy ơi 119 và 118 đâu ra vậy ạ

25 tháng 4 2019

Chọn đáp án C

Gọi E là biến cố “B mở được cửa phòng học”

27 tháng 2 2017

Số cách chọn 3 nút để ấn là A 10 3   =   720 .

Số trường hợp đạt yêu cầu là: (0, 1, 9); (0, 2, 8); (0, 3, 7); (0, 4, 6); (1, 2, 7); (1, 3, 6);

(1, 4, 5) ; (2, 3, 5).

Xác xuất để B mở được cửa là 8/720 = 1/90.

17 tháng 3 2018

Đáp án A

Phương pháp: Chia đường đi của thỏ thành 2 giai đoạn, tính số phần tử của không gian mẫu và số phần tử của biến cố A « thỏ đến được vị trí B » .

Cách giải :

Từ A đến B nhất định phải đi qua D,

ta chia làm 2 giai đoạn A → D          

              

1 tháng 2 2018

Phương pháp: Chia đường đi của thỏ thành 2 giai đoạn, tính số phần tử của không gian mẫu và số phần tử của biến cố A « thỏ đến được vị trí B » .

Cách giải :

Từ A đến B nhất định phải đi qua D, ta chia làm 2 giai đoạn  A → D và  D → B

Từ A → D có 9 cách.

Từ D → B có 6 cách tính cả đi qua C và có 3 cách không đi qua C.

Không gian mẫu  n Ω   =   9 . 6 = 54

Gọi A là biến cố « thỏ đến được vị trí B » thì nA = 9.3 = 27

Vậy

20 tháng 3 2019