K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Qua B kẻ BH // AC , cắt DM tại H

Ta có {BH // AK ; AB = BD => BH là đường trung bình của tam giác ADK

=> AK=2BH (1)

Dễ dàng chứng minh được tam giác MKC = tam giác MBH (g.c.g)

=> BH = CK (2)

Từ (1) và (2) suy ra AK = 2CK 

21 tháng 8 2017

Qua B Kẻ BH // AC , cắt DM tại H

Ta có : BH // AK

             AB // BD

=> BH là đường trung bình của tam giác ADK

=> AK = 2 BH (1)

·    *   Xét tam giác MKC và tam giác MBH .

CÓ : BM = CM ( M là trung điểm của BC)

         Góc M1= Góc M2 ( 2 góc đối đỉnh)

        Góc MKC = MBH ( = 90 *)* là độ

=> Tam giác MKC = Tam giác MBH ( g. c . g)

=> BH = KC ( 2 cạnh tương ứng )(2)

Từ (1), (2) suy ra được AK = 2 KC

21 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của AK

Trong  ∆ ADK ta có BH là đường trung bình của ∆ ADK.

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong  ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AK = 2 KC ( vì HK =KC)

14 tháng 11 2023

Gọi H là trung điểm của AK

Trong  ∆ ADK ta có BH là đường trung bình của ∆ ADK.

⇒ BH // DK (tính chất đường trung bình của tam giác)

Hay BH // MK

Trong  ∆ BCH ta có M là trung điểm của BC

MK // BH

⇒ CK = HK

AK = AH + HK = 2HK

Suy ra: AK = 2 KC ( vì HK =KC)

4 tháng 9 2016

A B C M K D H

Qua B kẻ BH // AC , cắt DM tại H

Ta có \(\begin{cases}BH\text{//}AK\\AB=BD\end{cases}\) => BH là đường trung bình của tam giác ADK

=> AK=2BH (1)

Dễ dàng chứng minh được \(\Delta MKC=\Delta MBH\left(g.c.g\right)\) 

=> BH = CK (2)

Từ (1) và (2) suy ra AK = 2CK 

A B C D M K H

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=> \(BH=\dfrac{1}{2}AK\) (tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có:

\(\widehat{KMC}=\widehat{BHM}\) (2 góc đối đỉnh)

CM = MB (M trung điểm CB)

\(\widehat{MBH}=\widehat{CKM}\) (KC // BH)

=> \(\Delta BHM=\Delta CKM\left(g.c.g\right)\)

=> KC = BH (2 cạnh tương ứng)

\(BH=\dfrac{1}{2}AK\) (cmt)

=> \(KC=\dfrac{1}{2}AK\)

\(\Rightarrow AK=2KC\left(đpcm\right)\)

20 tháng 8 2017

A B K C H M D

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=>BH=\(\dfrac{1}{2}AK\)(tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có :

\(\widehat{KMC}=\widehat{BMH}\) ( hai góc đối đỉnh )

CM=MB (M la ftrung điểm của CB)

\(\widehat{MBH}=\widehat{CKM}\) ( KC//BH )

=>\(\widehat{BHM}=\widehat{CKM}\)

=>KC = BH

mà BH=1/2 AK

=>\(KC=\dfrac{1}{2}AK\)

=>AK=2KC

=> đcpm