Tìm số tự nhiên lớn nhất, nhỏ nhất (tương ứng đặt là a,b) có dạng \(\overline{1x2y3z}\) chia hết cho \(7\).
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NL
0
CH
Cô Hoàng Huyền
Admin
VIP
7 tháng 2 2018
Bài 1:
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
KS
0
KS
1
- Số lớn nhất \(\Rightarrow x=y=9\), khi đó nó có dạng: \(\overline{19293z}\) chia hết cho 7
\(\Rightarrow\overline{93z}-192\) chia hết cho 7
\(\Rightarrow930+z-192=738+z⋮7\)
\(\Rightarrow z+3⋮7\)
Mà z lớn nhất \(\Rightarrow z=4\)
Vậy số lớn nhất là \(192934\)
- Số nhỏ nhất \(\Rightarrow x=y=0\), khi đó có dạng \(\overline{10203z}\) chia hết cho 7
\(\Rightarrow102-\overline{3z}⋮7\Rightarrow102-\left(30+z\right)⋮7\)
\(\Rightarrow z-2⋮7\), mà z nhỏ nhất \(\Rightarrow z=2\)
Vậy số nhỏ nhất là \(102032\)