K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=x^2-2xy+y^2+y^2-4y+4+1

=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2

b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2

=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2

Dấu = xảy ra khi x=1 và y=-1

14 tháng 8 2023

có lời giải chi tiết ko ạ

12 tháng 7 2016

nhanh lên các bạn nhé mai mình đi học rồi

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

14 tháng 7 2021

a, \(3x^3-5x^2-x-2>0\)

\(< =>3x^3+x^2+x-6x^2-2x-2>0\)

\(< =>x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)>0\)

\(< =>\left(x-2\right)\left(3x^2+x+1\right)>0\)

có \(3x^2+x+1=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{3}\right)=3\left[x^2+2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{35}{36}\right]\)

\(=3\left[\left(x+\dfrac{1}{6}\right)^2+\dfrac{35}{36}\right]>0=>x-2>0< =>x>2\)

b, \(A=2x^2+y^2-2xy-2x+3\)

\(A=x^2-2xy+y^2+x^2-2x+1+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)

dấu"=" xảy ra<=>\(x=y=1\)

22 tháng 9 2019

\(A=x^2+2y^2+2xy+2x-4y+2020\)

      \(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

        \(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)

Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)

Chúc bạn học tốt !!!

22 tháng 9 2019

Tham khảo :

\(A=x^2+2y^2+2xy+2x-4y+2020\)

\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)