K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2024

2\(x^2\) - 5 \(\sqrt{x^2-5x+7}\) = 10\(x\) - 17 Đk \(x^2\) - 5\(x\) + 7  ≥ 0

\(x^2\) - 2.\(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{3}{4}\) = (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{3}{4}\) > 0 ∀ \(x\)

ta có: 2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) = 10\(x\) - 17

2\(x^2\) - 5\(\sqrt{x^2-5x+7}\) - 10\(x\) + 17 = 0

(2\(x^2\) - 10\(x\) + 14)  -  5\(\sqrt{x^2-5x+7}\) + 3 = 0

2.(\(x^2\) - 5\(x\) + 7) - 5.\(\sqrt{x^2-5x+7}\) + 3 = 0

Đặt \(\sqrt{x^2-5x+7}\) = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  \(\dfrac{3}{2}\) 

TH1 y = 1 ⇒ \(\sqrt{x^2-5x+7}\)  = 1

⇒ \(x^2\) - 5\(x\) + 7  = 1

    \(x^2\) - 5\(x\) + 6 = 0

     \(\Delta\) = 25 -  24 = 49

    \(x_1\) = \(\dfrac{-\left(-5\right)+\sqrt{1}}{2}\) =  3;

    \(x_2\) =  \(\dfrac{-\left(-5\right)-\sqrt{1}}{2}\)  = 2;

TH2  y = \(\dfrac{3}{2}\)

        \(\sqrt{x^2-5x+7}\) = \(\dfrac{3}{2}\)

         \(x^2\) - 5\(x\) + 7 = \(\dfrac{9}{4}\)

         4\(x^2\) - 20\(x\) + 28 = 9

          4\(x^2\) - 20\(x\) + 19 = 0

           \(\Delta'\) = 102 - 4.19

          \(\Delta'\) = 24

           \(x_1\) = \(\dfrac{-\left(-10\right)+\sqrt{24}}{4}\) = \(\dfrac{10+\sqrt{24}}{4}\)

           \(x_2\) = \(\dfrac{-\left(-10\right)-\sqrt{24}}{4}\) = \(\dfrac{10-\sqrt{24}}{4}\)

            8 - 5\(\sqrt{6}\)

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 5\(\sqrt{6}\); 2 ; 3; 8 + 5\(\sqrt{6}\)}

 

           

 

    

   

   

 

    

 

3 tháng 1 2024

2�2x2 - 5 �2−5�+7x25x+7 = 10x - 17 Đk �2x2 - 5x + 7  ≥ 0

�2x2 - 2.5225x + 254425 + 3443 = (x - 5225)2 + 3443 > 0 ∀ x

ta có: 2�2x2 - 5�2−5�+7x25x+7 = 10x - 17

2�2x2 - 5�2−5�+7x25x+7 - 10x + 17 = 0

(2�2x2 - 10x + 14)  -  5�2−5�+7x25x+7 + 3 = 0

2.(�2x2 - 5x + 7) - 5.�2−5�+7x25x+7 + 3 = 0

Đặt �2−5�+7x25x+7 = y > 0 ta có: 

2y2 - 5y + 3  = 0

2 + (-5) + 3 = 0

⇒ y1= 1; y2 =  3223 

TH1 y = 1 ⇒ �2−5�+7x25x+7  = 1

⇒ �2x2 - 5x + 7  = 1

    �2x2 - 5x + 6 = 0

     ΔΔ = 25 -  24 = 49

    �1x1 = −(−5)+122(5)+1 =  3;

    �2x2 =  −(−5)−122(5)1  = 2;

TH2  y = 3223

        �2−5�+7x25x+7 = 3223

         �2x2 - 5x + 7 = 9449

         4�2x2 - 20x + 28 = 9

          4�2x2 - 20x + 19 = 0

           Δ′Δ = 102 - 4.19

          Δ′Δ = 24

           �1x1 = −(−10)+2444(10)+24 = 10+244410+24

           �2x2 = −(−10)−2444(10)24 = 10−24441024

            8 - 566

Từ các lập luận trên kết luận phương trình có tập nghiệm là:

S = {8 - 566; 2 ; 3; 8 + 566}

21 tháng 2 2022

`Answer:`

ĐK: `x^3-1>=0`

`<=>(x-1)(x^2+x+1)>0`

`<=>x>=1`

PT tương đương: `2.(x^2+x+1)+3(x-1)=7\sqrt{(x^2+x+1)(x-1)}`

Đặt `a=\sqrt{x^2+x+1}<=>a^2=x^2+x+1;b=\sqrt{x-1}<=>b^2=x-1`

PT tương đương: `2a^2+3b^2=7ab`

`<=>2a^2-7ab+3b^2=0`

`<=>2a^2-ab-6ab+3b^2=0`

`<=>a(2a-b)-3b(2a-1)=0`

`<=>(2a-b)(a-3b)=0`

`<=>2a=b` hoặc `a=3b`

Với `2a=b:`

`2\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>4(x^2+x+1)=9(x-1)`

`<=>4x^2-5x+13=0`

`\Delta=5^2-4.4.13<0`

Vậy phương trình vô  nghiệm.

Với `a=3b:`

`\sqrt{x^2+x+1}=3\sqrt{x-1}`

`<=>x^2+x+1=9(x-1)`

`<=>x^2-8x+10=0`

`\Delta'=4^2-10=6`

`<=>x=4+-\sqrt{6}`

Vậy phương trình cố  nghiệm là `x=4+-\sqrt{6}`

`

18 tháng 1 2018

ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)

=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)

=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>

\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

=>\(\left(x+1\right)^2=0\)

=>x+1=0

=>x=-1(nhận)

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

7 tháng 1 2020

ĐK:....

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)

<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

<=> x + 1 = 0 

<=> x = -1. ( đối chiếu điều kiện )

Kết luận.

26 tháng 11 2020

Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6

=> x = -1

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

25 tháng 10 2015

5x2+10x+21=5(x+1)2+16>=42

3x2+6x+7=3(x+1)2+4>=22

Do đó VT>=6(1)

VP=5-2x-x2=6-(x+1)2=<6(2)

Từ (1)(2)=> VT=VP=6

Giải VP=6 <=>5-2x-x2=6

                <=>x=-1

 

15 tháng 10 2016

Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)

  • Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.

Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\) 

Tương tự ta chứng minh được :

  • f(x) nghịch biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1
  • \(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1

+ Với x = -1 thì VT = VP => là nghiệm của pt trên

+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí

+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí

Vậy x = -1 là nghiệm duy nhất của phương trình.

15 tháng 10 2016

Ta có 

\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)

\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)

4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)

Ta có VT \(\ge5\);VP \(\le\)5

Nên dấu bằng xảy ra khi x = - 1

4 tháng 4 2020

ta có

zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)

zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức

KL ::