K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

A = 3 + 3^2 + 3^3 + ... + 3^100

3A = 3^2 + 3^3 + 3^4 + ... + 3^101

3A \(-\)A = ( 3^2 + 3^3 + 3^4 + ... + 3^101) \(-\)(3 + 3^2 + 3^3 + ... + 3^100)

     2A  =    3^101  \(-\)3

\(\Rightarrow\)2A + 3 = 3^101  \(-\)3  +  3  =  3^101

\(\Rightarrow\)3^N  =  3^101

\(\Rightarrow\)N = 101

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100} (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101} (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 3.

Do đó, 2A + 3 = 3^{101}

Mà theo đề bài 2A + 3 = 3^n.

Vậy n = 101.

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

4 tháng 10 2016

a) A=3+32+33+...+3100

3A=32+33+34+...+3101

3A-A=(32+33+34+...+3101)-(3+32+33+...+3100)

2A=3101-3

b) 2A+3=3101=3n

=>n=101

15 tháng 8 2015

=>3A=32+33+…+32010

=>3A-A=32+33+…+32010-3-32-…-32009

=>2A=32010-3

=>2A+3=32010=3N

=>N=2010

15 tháng 8 2015

A = 3+32+33+......+32009

3A = 32+33+34+......+32010

2A = 3A - A = 32010-3

=> 2A + 3 = 32010

Mà 2A + 3 = 3n

=> n = 2010

1 tháng 7 2015

a=3+32+33+....+3100

=>3a=32+33+....+3101

=>3a-a=32+33+....+3101 -(3+32+33+....+3100)

=>2a=32+33+....+3101-3-32-33-...-3100

=>2a=3101-3

=>2a+3=3101

mà theo đề 2a+3=3n

=>n=101

vậy n=101

1 tháng 7 2015

a=3+32+...+3100

=>3a=32+33+...+3101=> 3a-a=2a=(32+33+...+3101)-(3+32+...+3100)=3101-3

\(\Rightarrow a=\frac{3^{101}-3}{2}\)

=>2a+3=\(2\times\frac{3^{101}-3}{2}+3=\left(3^{101}-3\right)+3=3^{101}-3+3=3^{101}-\left(3-3\right)=3^{101}-0=3^{101}\)

24 tháng 12 2021

\(3A=3^2+3^3+3^4+...+3^{2021}\)

\(2A=3A-A=3^{2021}-3\)

\(\Rightarrow2A+3=3^{2021}-3+3=3^{2021}=3^n\Rightarrow n=2021\)

6 tháng 6 2015

 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
 

6 tháng 6 2015

Ta có: A=3+32+33+...+3100

=>    3A=32+33+34+...+3100+3101

=>3A-A=32+33+34+...+3100+3101-(3+32+33+...+3100)

=>    2A=3101-3

=>2A+3=3101

Lại có: 2A+3=3n

=>        2A+3=3101=3n

=>           3101=3n

=>           101=n

Vậy n=101