cho các số nguyên tố p, q và số nguyên x thả mãn: x5 + px + 3q = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x5 + 3q = -px mà p là số nguyên tố lên x5 +3q \(⋮x=>3q⋮x=>3⋮x\)(vì q là số nguyên tố)
=> x=1;-1 ; 3; -3
x=1 =>1+ p + 3q >0 (loại); x= 3 tương tự cũng lọai
x=-1 => -1-p +3q=0 <=> 3q -1 = p
xét q =1 => p =2 (thỏa mãn)
xét q = 2 => p=5 (thỏa mãn)
với q>2 mà q là số nguyên tố nên q phải là số lẻ => 3q là số lẻ => 3q -1 là số chẵn => p là số chẵn lớn hơn 2 => p không là số nguyên tố (loại)
xét x = -3 => -3 -3p + 3q =0 => q-1= p
xét tương tự q= 2 => p=1 thỏa mãn
q=3 => p=2 thỏa mãn
q>3 => q là só nguyên tô lẻ => q-1 là số chắn lớn hơn 2 => p là số chắn >2 => không là số nguyên tố(loại)
vậy ta có các nghiệm (x; p; q) = ( -1; 2; 1); (-1; 5; 2); (-3; 1; 2); (-3; 2; 3)
Bài bạn làm sai rồi ( tỉ lệ sai : 100%) dễ thấy vì q là số nguyên tố nên xét TH q =2 thôi xét q=1 làm gì ? Vì 1 ko phải scp . Lỗi thứ 2 là : TH x=-3 bạn suy ra -3-3p+3q=0 mà đề bài cho x^5 + px+3q=0 .Do đó vô lý.
CÁ TRÊ tra bài nhớ cho mình đúng nha
\(^{x^5+px+3q=0\Leftrightarrow x^5+px=-3q\Leftrightarrow x\left(x^4+p\right)=-3q}\)
Theo đề bài \(x^4+p>0\Rightarrow x< 0\) (1)
q là số nguyên tố => \(-3q=\left(-3\right).q=\left(-1\right).3q=\left(-3q\right).1=\left(-q\right).3\)(2)
Từ (1) (2) \(\Rightarrow x=\left\{-1;-3;-q;-3q\right\}\)
+ Xét \(x=-1\Rightarrow1+p=3q\)
q là số nguyên tố \(\Rightarrow\left[{}\begin{matrix}q=2\\q>2\end{matrix}\right.\)
\(q=2\Rightarrow p=5,x=-1\) (thoả mãn)
\(q>2\Rightarrow\)q là số lẻ => p là số chẵn, p là số nguyên tố\(\Rightarrow p=2,q=1\) (loại )
+ Xét \(x=-3\Rightarrow p+81=q\Rightarrow p=2,q=83,x=-3\) (thoả mãn)
+ Xét \(x=-q\Rightarrow q^4+p=3\Rightarrow q=1,p=2\) (loại)
+ Xét \(x=-3q\Rightarrow81q^4+p=1\) (loại)
Vậy \(\left(x,p,q\right)\) thoả mãn là \(\left(-1,5,2\right);\left(-3;2;83\right)\)
Lớp 1 mà học đx cái nè thì thành => THẦN ĐỒNG !!!!!! :))))))))
\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p
TH1: p=2 => q=3 thỏa mãn
TH2: p>2
mà p nguyên tố lẻ => p-1 chia hết cho 2
và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí
Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}
Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3
p²+q²=2²+3²=13 là số nguyên tố ( đọc)
Để pt đã cho có nghiệm nguyên dương thì \(\Delta =p^2-4q\) là số chính phương.
Đặt \(p^2-4q=k^2\Leftrightarrow4q=\left(p-k\right)\left(p+k\right)\) với k là số tự nhiên.
Do p - k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p - k < p + k và q là số nguyên tố nên p - k = 2; p + k = 2q hoặc p - k = 4; p + k = q.
Nếu p - k = 4; p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p - k).
Nếu p - k = 2; p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy pt \(x^2-3x+2=0\) có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
Đề bài yêu cầu gì thế bạn?