K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1

Giải: (hình bn vẽ nha)

a,

- Xét △DEI và △DMI, có:

     DE = DM (theo giả thiết)

     EI = MI (theo giả thiết)

     DI_cạnh chung

=> △DEI = △DMI (c.c.c)

b,

- Có △DEI = △DMI (chứng minh trên)

=> ∠DIE = ∠DIM (2 cạnh tương ứng)

     mà 2 góc này kề bù

=> ∠DIE = ∠DIM = \(\dfrac{180^o}{2}\) = \(90^o\)

<=> DI ⊥ EM tại I

c,

- Có \(\left\{{}\begin{matrix}DN=EM\\DI=IH\\DI\text{⊥EM}\end{matrix}\right.\)(theo giả thiết/ chứng minh trên)

=> △DNI = △EIH

Do đó, ta có 3 điểm N, E, H thẳng hàng.

 

2 tháng 4 2022

C

2 tháng 4 2022

C

23 tháng 1 2022

ta thấy 3x3+4x4=5x5 nên nó là tam giác vuông 

diện tích là     S=1/2x3x4=6(cm2)

chúc bạn học tốt

HYC-23/1/2022

9 tháng 3 2019

Ta có EF2=202=400

DE2+DF2=122+162=400

\(\Rightarrow\)EF2=DE2+DF2

Vậy tam giác DEF là tam giác vuông ( áp dụng định lí Py-ta-go đảo)

^-^ Học tốt nha^-^

Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nênΔDEF vuông tại D

25 tháng 2 2022

Xét 

DE^2 + DF^2 = 3^2 + 4^2 = 9 + 16 = 25

EF^2 = 5^2 = 5

=> DE^2 + DF^2 = EF^2

=> DEF là tam giác vuông

28 tháng 11 2021

\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)

17 tháng 8 2017

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 

cạnh góc vuông : AB = DE

góc nhọn : ABC = DEF 

=> tam giác ABC = tam giác DEF ( cgv - gn )

Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

22 tháng 2 2020

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF 
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

\(\Delta DEF\) cho ta \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)

                   \(\Rightarrow\widehat{D}=180^0-\left(\widehat{E}+\widehat{F}\right)\)

                   \(\Rightarrow\widehat{D}=180^0-\left(70^0+60^0\right)=180^0-130^0=50^0\)

\(Xét\) \(\Delta ABCvà\Delta DEFcó\)

\(\widehat{A}=\widehat{D}\left(=50^0\right)\)

AB=DE

AC=DF

\(\Rightarrow\Delta ABC=\Delta DEF\left(c-g-c\right)\)

Vậy \(\Delta ABC=\Delta DEF\)

 

22 tháng 2 2020

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF 
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

Cho tam giác ABC và tam giác DEF có: AB=DE,BC=EF,AC=DF.

Xét ΔABC và ΔDEF có:

AB=DE(gt)

BC=EF(gt)

AC=DF(gt)

⇒ΔABC=ΔDEF (c.c.c).

Học tốt nhé!

21 tháng 2 2018

DE bằng nbao nhiêu cm vậy bạn?

20 tháng 8 2023

Để hai tam giác trên bằng nhau theo trường hợp c.c.c thì các cặp cạnh tương ứng phải bằng nhau. Vì đã có hai cặp cạnh tương ứng là MN và DE, PM và DF nên cần thêm điều kiện NP = EF để hai tam giác trên bằng nhau theo trường hợp c.c.c