K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2024

sai

 

14 tháng 12 2023

loading...  loading...  

16 tháng 11 2021

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

19 tháng 10 2021

Ta có hằng đẳng thức: 

\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0.\left(a^2+b^2+c^2-ab-bc-ca\right)+3.1=0+3=3\)

15 tháng 7 2023

\(a+b+c=1\) 

\(\Leftrightarrow\left(a+b+c\right)^3=1\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)

\(\Leftrightarrow1+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\)'

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)

 Không mất tính tổng quát, giả sử \(a+b=0\), các trường hợp còn lại làm tương tự.

 Khi đó từ \(a+b+c=1\) suy ra \(c=1\) (thỏa mãn). Thế thì \(T=0^{2023}+0^{2023}+1^{2023}=1\)

 Như vậy \(T=1\)

22 tháng 1 2017

A=1

chuẩn

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

12 tháng 2 2022

giúp mình câu hỏi này với ah.

24 tháng 12 2017

Ta có

( a   +   b ) 3   =   a 3   +   3 a 2 b   +   3 a b 2   +   b 3   =   a 3   +   b 3   +   3 a b ( a   +   b )     = >   a 3   +   b 3   =   ( a   +   b ) 3   –   3 a b ( a   +   b )

 

Từ đó

B   =   a 3   +   b 3   +   c 3   –   3 a b c =   ( a   +   b ) 3   –   3 a b ( a   +   b )   +   c 3   –   3 a b c =   [ ( a + b ) 3   +   c 3 ]   –   3 a b ( a   +   b   + c )       =   ( a   +   b   +   c ) [ ( a   +   b ) 2   –   ( a   +   b ) c   +   c 2 ]   –   3 a b ( a   +   b   +   c )

 

Mà a + b + c = 0 nên

B   =   0 . [ ( a   +   b ) 2   –   ( a   +   b ) c   +   c 2 ]   –   3 a b . 0   =   0

Vậy B = 0

Đáp án cần chọn là: A