Cho \(\Delta ABC\)có AB = 3cm, BC = 4cm, CA = 5cm. Đường cao, đường phân cách, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành bốn phần. Hãy tính diện tích mỗi phần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=căn 5^2-4^2=3cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH*BC=AB*AC
=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm
CH=5-1,8=3,2cm
b: C=3+4+5=12cm
S=1/2*3*4=6cm2
AM=BC/2=2,5cm
c: MA=MC=2,5cm
AC=4cm
ΔMAC cân tại M có MI là đường cao
nên I là trung điểm của AC
=>IA=IC=AC/2=2cm
MI=căn MA^2-IA^2=1,5cm
Gọi tiếp điểm giữa đường tròn nội tiếp \(\Delta\)ABC với BC,CA,AB lần lượt là D,E,F; BM cắt đường tròn này tại U,V.
Đặt \(BC=m;CA=n;BU=UV=VM=p;AE=AF=q\left(m,n,p,q>0;q< x\right)\)
Áp dụng phương tích đường tròn ta có: \(BF^2=ME^2=2p^2\Rightarrow AB=AM=\frac{n}{2}\)hay \(n=2x\)
Đồng thời \(CD=CE=2x-q;BD=BF=x-q\Rightarrow m=3x-2q;p^2=\frac{\left(x-q\right)^2}{2}\)
Từ đó; áp dụng công thức đường trung tuyến, ta có:
\(\frac{9}{2}\left(x-q\right)^2=\frac{x^2+\left(3x-2q\right)^2}{2}-x^2\Leftrightarrow x^2-6xq+5q^2=0\Leftrightarrow\orbr{\begin{cases}q=x\left(l\right)\\q=\frac{x}{5}\end{cases}}\)
Do vậy \(m=3x-\frac{2}{5}x=\frac{13}{5}x\)
Áp dụng công thức Heron vào \(\Delta\)ABC, ta thu được: \(S_{ABC}=\sqrt{x^4.\frac{14}{5}.\frac{9}{5}.\frac{4}{5}.\frac{1}{5}}=\frac{6\sqrt{14}}{25}x^2.\)
Kẻ \(AH\perp BC\left(H\in BC\right)\)
Ta có: \(AB^2+AC^2=BC^2\left(3^2+4^2=5^2\right)\Rightarrow\Delta ABC\) vuông tại A
\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.5=3.4\Rightarrow AH=2,4\left(cm\right)\)
AD là tia p/g của \(\widehat{BAC}\left(D\in BC\right)\Rightarrow\)\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{3}{4}\)
\(\Rightarrow\frac{DB}{DB+DC}=\frac{3}{3+4}\Rightarrow\frac{DB}{BC}=\frac{3}{7}\Rightarrow\frac{DB}{5}=\frac{3}{7}\Rightarrow DB=\frac{15}{7}\left(cm\right)\)
\(BM=\frac{1}{2}BC=\frac{1}{2}.5=\frac{5}{2}\left(cm\right)\)
Do đó: \(DM=BM-BD=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}\left(cm\right)\)
Vậy \(S_{ADM}=\frac{1}{2}AH.DM=\frac{1}{2}.2,4.\frac{5}{14}=\frac{3}{7}\left(cm^2\right)\)