Tìm số tự nhiên n để n mũ 3 + 6 chia hết n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(50+3n^2\right)⋮n\Rightarrow\dfrac{50+n^2}{n}\) có giá trị là số nguyên
\(\Rightarrow3n+\dfrac{50}{n}\) có giá trị là số nguyên
⇒ n ∈ Ư(50) và n \(\ge\) 0 (n∈N)
Vậy \(n\in\left\{1;2;5;10;25;50\right\}\)
n2 + 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
n2 + 2n chia hết cho n + 2
=> (n2 + 2n - n2 + 3) chia hết cho n + 2
2n - 3 chia hết cho n + 2
n + 2 chia hết cho n + 2
=> 2(n + 2) chia hết cho n + 2
2n + 4 chia hết cho n + 2
=>(2n + 4 - 2n + 3) chia hết cho n + 2
7 chia hết cho n + 2
n + 2 thuộc U(7) = {-7;-1;1;7}
n + 2 = -7 => n = -9
n + 2 = -1 => n = -3
n + 2 = 1 => n = -1
n + 2 = 7 => n = 5
Mà n là số tự nhiên nên n = 5
n^2+3 chia hết cho n+2
=>(n^2+4n+4)-4n-1 chia hết cho n+2
=>(n+2)^2 -(4n+1) chia hết cho n+2
=>4n+1 chia hết cho n+2(vì (n+2)^2 chia hết cho n+2)
=>4(n+2)-7chia hết cho n+2
=>7 chia hết cho n+2
=>n+2 thuộc Ư(7)
=>n+2=(1,7)
=> n=-1;5 mà n là số tự nhiên nên n=5
đáp số n=5
ta có : \(n^2+3n+4=n\left(n+3\right)+4\text{ chia hết cho }n+3\)
khi \(4\text{ chia hết cho }n+3\)
mà n là số tự nhiên nên n+3=4 hay n=1
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
\(TH1:n\inℕ;n⋮2\)
\(\Rightarrow n+6⋮2\left(6⋮2\right)\)
\(\Rightarrow\left(n+3\right)\cdot\left(n+6\right)⋮2\)
\(TH2:n\inℕ;n⋮̸2\)
\(\Rightarrow n+3⋮2\)
\(\Rightarrow\left(n+3\right)\cdot\left(n+6\right)⋮2\)
\(TH1:n\inℕ;n⋮2\)
\(\Rightarrow n\left(n+1\right)⋮2\)
\(\Rightarrow n^2+n⋮2\)
\(\Rightarrow n^2+n+1⋮̸2\left(1⋮̸2\right)\)
\(TH2:n\inℕ;n⋮̸2\)
\(\Rightarrow n+1⋮2;n^2⋮̸2\)
\(\Rightarrow n^2+n+1⋮̸2\)
Giúp mình với
(n³ + 6) ⋮ n
⇒ 6 ⋮ n
⇒ n ∈ Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Mà n là số tự nhiên
⇒ n ∈ {1; 2; 3; 6}