tính tổng dãy sau : 1 + 1/3 + 1/6 + 1/11 + 1/20 +...+ 1/32783
giúp em với mn ơi !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 1 + (-2) + 3 + (-4) + . . . + 19 + (-20)
=1-2+3-4+...+19-20
=(1-2)+(3-4)+...+(19-20)
=(-1)+(-1)+...+(-1)
=(-1).10
=-10
2/ 1 – 2 + 3 – 4 + . . . + 99 – 100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1).50
=-50
3/ 2 – 4 + 6 – 8 + . . . + 48 – 50
=(2-4)+(6-8)+...+(48-50)
=(-2)+(-2)+...+(-2)
=(-2).13
=-26
4/ – 1 + 3 – 5 + 7 - . . . . + 97 – 99
=(-1)+(3-5)+(7-9)+...+(97-99)
=(-1)+(-2)+(-2)+...+(-2)
=(-1)+(-2).45
=(-1)+(-90)
=(-91)
5/ 1 + 2 – 3 – 4 + . . . . + 97 + 98 – 99 - 100
=(1+2-3-4)+...+(97 + 98 – 99 - 100)
=(-4)+...+(-4)
=(-4).25
=-100
\(HT\)
1/ \(1+(-2)+3+(-4)+...+19+(-20)\)
\(=(-1+3+5+...+19)-(2+4+6+...+20)\)
\(=(19-1):2+1=10\)
\(=(1+19).10:2-(20+2).10:2\)
\(=100-110\)
\(=-10\)
2/ \(1 – 2 + 3 – 4 + . . . + 99 – 100\)
\(= ( 1 - 2 ) + ( 3 - 4) + .... + ( 99 - 100 )\)
\(= -1 + ( -1) + ....+ ( -1)\)
\(=(-1).50\)
\(=-50\)
3/ \( 2 – 4 + 6 – 8 + . . . + 48 – 50\)
\(= 2 +( – 4 + 6)+( – 8+10) + . . . +( -44+46)+ ( 48 – 50)\)
\(= 2+2+2+...+2+( -2) \)
\(= 2.12 +( -2 ) \)
\(=22\)
4/ \(-1+3-5+7-...+97-99\)
\(= ( -1 + 3 ) + ( -5 + 7 )+....+( -93 +95 ) + ( 97 - 99 )\)
\(= -2+( -2)+...+( -2)+2\)
\(= -2.24+2\)
\(=-46\)
5/ \( 1+2-3-4+...+97+98-99-100\)
\(= ( 1+2-3-4)+...+( 97+98-99-100)\)
\(= -4+...+( -4)\)
\(=(-4).25\)
\(=-100\)
A) 1/3 + 1/6 + 1/18 = 6/18 + 3/18 = 9/18+ 1/8= 10/8
B) 1/20 + 1/4 + 2/5 = 4/80 + 20/80 = 24/80 + 2/5 = 120/400+160/400 = 280/400
C) 1/12 + 1/6 + 3/4 = 6/72 + 12/72 = 18/72
D) 1/4 + 2/25 + 3/100 = 33/100 + 3/100= 36/100
K nha
số số hạng từ 1 đến 144 là : 144 ( số )
Tổng dãy số là :
( 1 + 144 ) X 144 : 2 = 11088
a, 1+2+3+5+8+...+144
Nhận xét: Ta thấy trong tổng trên kể từ số thứ 3 trở đi thì số liền sau bằng tổng của 2 số liền trước.
"3=2+1;5=3+2;8=5+3;..."
Vậy tổng được viết đầy đủ là:
1+2+3+5+8+13+21+34+55+89+144
Ta tính tổng là: 1+2+3+5+8+13+21+34+55+89+144=365
Còn b,c thì ko biết
Ta thấy ngay 1 quy luật là nếu số lẻ có dạng \(4k+1\) (số thứ tự của nó là lẻ) thì mang dấu dương còn nếu có dạng \(4k+3\) (số thứ tự của nó là chẵn) thì mang dấu âm. Trước hết ta tìm công thức tính giá trị tuyệt đối của số hạng thứ \(k\) của dãy, kí hiệu là \(u_k\), dễ thấy\(u_k=1+\left(k-1\right).2=2k-1\).
Bây giờ ta xét đến dấu của số hạng thứ \(k\). Như phân tích ở trên, nếu \(k\) lẻ thì \(u_k< 0\) còn nếu \(k\) lẻ thì \(u_k>0\). Do đó \(u_k=\left(-1\right)^{k+1}\left(2k-1\right)\)
Cái chỗ trị tuyệt đối mình kí hiệu là \(\left|u_k\right|\) đấy, mình quên.
\(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
=> \(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)
=> \(C=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{10}-\frac{1}{11}\right)\)
=> \(C=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)