Cho n \(\in\)Z:
CMR:[\(\frac{n}{2}\)] + [\(\frac{n+1}{2}\)] = n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2+\left(n+1\right)^2+\left(n^2+n\right)^2}{\left(n^2+n\right)^2}}\)
\(=\sqrt{\frac{2n^2+2n+1+\left(n^2+n\right)^2}{\left(n^2+n\right)^2}}=\sqrt{\frac{1+2\left(n^2+n\right)+\left(n^2+n\right)^2}{\left(n^2+n\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}}=\frac{n^2+n+1}{n^2+n}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Đặt \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\Rightarrow A>1\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow A< 2-\frac{1}{n}< 2\)
\(\Rightarrow1< A< 2\Rightarrow A\) nằm giữa 2 số tự nhiên liên tiếp nên A không phải là 1 số tự nhiên
Do p là số nguyên tố nên \(p-1\) là số chẵn , suy ra : \(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)
\(=\left(\frac{1}{1}+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+\left(\frac{1}{3}+\frac{1}{p-3}\right)+...+\left(\frac{1}{\frac{p-1}{2}}+\frac{1}{\frac{p+1}{2}}\right)\)
\(=\frac{p}{1.\left(p-1\right)}+\frac{p}{2.\left(p-2\right)}+\frac{p}{3.\left(p-3\right)}+...+\frac{p}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\)
\(=p\left[\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+\frac{1}{3.\left(p-3\right)}+...+\frac{1}{\left(\frac{p-1}{2}\right)\left(\frac{p+1}{2}\right)}\right]\)
Ta có : \(1.\left(p-1\right).2.\left(p-2\right)...\frac{p-1}{2}.\frac{p+1}{2}=\left(p-1\right)!\)
Suy ra : \(\frac{m}{n}\) có dạng :
\(\frac{m}{n}=p\frac{q}{\left(p-1\right)!}\Rightarrow m\left(p-1\right)!=npq\Rightarrow m\left(p-1\right)!⋮p\)mà \(\left(p-1\right)!⋮̸p\) nên \(\Rightarrow m⋮p\).
Chúc bạn học tốt nha !!!
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{p-1}\)
\(\frac{m}{n}=\left(1+\frac{1}{p-1}\right)+\left(\frac{1}{2}+\frac{1}{p-2}\right)+...+\)\(\left(\frac{1}{\left(p-1\right):2}+\frac{1}{\left(p-1\right):2+1}\right)\)
\(\frac{m}{n}=p.\)(\(\frac{1}{1.\left(p-1\right)}+\frac{1}{2.\left(p-2\right)}+...+\)\(\frac{1}{\left[\left(p-1\right):2\right].\left[\left(p-1\right):2+1\right]}\))
MC: 1.2.3...(p-1)
Gọi các thừa số phụ lần lượt là: k1;k2;k3;...;kp-1
Khi đó, \(\frac{m}{n}=\frac{p.\left(k_1+k_2+k_3+...+k_{p-1},\right)}{1.2.3...\left(p-1\right)}\)
Do p nguyên tố > 2 mà mẫu không chứa thừa số p nên đến khi rút gọn tử số vẫn chứa thừa số nguyên tố p
=> m chia hết cho p (đpvm)
Bạn tham khảo tại đây nha!!
https://olm.vn/hoi-dap/detail/105992780559.html
Học tốt!!
\(Sn=1-1+1-\frac{1}{2^2}+1-\frac{1}{3}^2+...+1-\frac{1}{n^2}=n-\left(1+\frac{1}{2^2}+...+\frac{1}{n^2}\right)< n\)(1)
\(Sn>n-\left[\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n+1\right).n}\right]=n-\left(1-\frac{1}{n+1}\right)=n-1+\frac{1}{n+1}>n-1\)(2)
từ (1) và (2) => n-1<Sn<n => Sn k là số nguyên
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
Ta có:\(\frac{n}{2}+\frac{n+1}{2}=n\)
\(\Leftrightarrow\frac{2n+1}{2}=n\)
\(\Leftrightarrow2n+1=2n\)
\(\Leftrightarrow0n=1\)
Do đó ko thể chứng minh đc
Cách làm có phải là các làm phần nguyên phần lẻ của một số hữu tỉ ko