Tính tổng:
S = 1+(-2)+3+(-4)+....+49+(-50)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (-50) + (-49) + (-48) +..... + 49 + 50 + 51 + 52
S = [(-50)+50] + [(-49)+49]+........+[(-1)+1] + 0 + 51 + 52
S = 0+ 0 +.... + 0 + 51 + 52 = 51 + 52
S = 103
3S=1.2.3+2.3.3+3.4.3+...+49.50.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+48.49.(50-47)+49.50.(51-48)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...(47.48.49-47.48.49)-(48.49.50-48.49.50)+49.50.51
=0+0+...+0+0+49.50.51
=49.50.51
S=(49.50.51)/3
=41650
Đáp số:41650
Ta có: \(A=2^0+2+2^2+...+2^{49}+2^{50}\)
\(2A=2+2^2+2^3+...+2^{50}+2^{51}\)
\(2A-A=2^{51}-2^0\)
Hay \(A=2^{51}-1\)
Hok "tuốt" nha^^
A = 2-1/1x2 + 3-2/2x3 + ..... + 50-49/49x50
= 1 - 1/2 + 1/2 - 1/3 + ........ + 1/49 - 1/50
= 1 - 1/50
= 49/50
Tk mk nha
mình không chep lại đề bài đâu
A=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/49-1/50
A=1/1-0-0-0-....-0-1/50
A=1/1-1/50
A=49/50
S1 = 1-2+3-4+...+1997-1998+1999
S1 = ( 1-2)+(3-4)+...+(1997-1998)+1999
= -1+-1+-1+...+-1+1999
= (-1) x999 + 1999 = -999 + 1999 = 1000
S2 = 1-4+7-10+...-2998+3001
S2 = (1-4)+(7-10)+...+(2995-2998) + 3001
= -3 + -3 + ... + -3 + 3001
= .......
a)S1=1-2+3-4+...+1997-1998+1999
S1=(1-2)+(3-4)+...+(1997-1998)+1999
S1=(-1)+(-1)+...+(-1)+1999 Vì dãy S1có 1999 số hạng => Dãy S1 có 999 cặp -1 và 1999.
S1=(-1).999+1999
S1=-999+1999
S1=1000
b)S2=1-4+7-10+...-2998+3001
S2=(1-4)+(7-10)+...+(2995-2998)+3001
S2=(-3)+(-3)+...+(-3)+3001 Dãy S2 có 1001 số hạng => Dãy S2 có 500 cặp -3 và 3001.
S2=(-3).500+3001
S2=-1500+3001
S2=1501
Với mọi n là số tự nhiên ta luôn có :
1/21 + 1/22 + 1/23 + ... + 1/2n = (2n-1)/2n
Cho nên tổng của bài toán này là (250-1)/250
Gọi BT Trên là A
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
\(A=2A-A=1-\frac{1}{2^{50}}\)
Lời giải:
$S=1+(-2)+3+(-4)+....+49+(-50)$
$=[1+(-2)]+[3+(-4)]+....+[49+(-50)]$
$=(-1)+(-1)+(-1)+....+(-1)$
Số lần xuất hiện của $-1$: $[(50-1):1+1]:2=25$ (lần)
$S=(-1).25=-25$