Tìm x, y thuộc Z để cho : x - y + 2xy = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
<=> \(x=\frac{3-y}{1+2y}\)
Để x, y\(\in\)Z\(1+2y\in\text{Ư}_5\)hì \(\frac{3-y}{1+2y}\in Z\)
<=>\(3-y⋮1+2y\)
<=>\(-1-2y-5⋮1+2y\)
<=>\(1+2y\in\text{Ư}\)5
<=>\(1+2y\in\text{{}\text{ }1;-1;5;-5\)
<=>\(2y\in\text{{}0;-2;4;-6\)<=>\(y\in\text{{}0;-1;2;-3\)=>x=...
Ta có: x-y+2xy=3 <=> 2x - 2y + 4xy = 6 <=> 2x.(1+2y)-2y=6 <=> 2x.(2y+1) - (2y+1) + 1 =6
<=> (2y+1).(2x-1)=5
Mà x,y thuộc Z nên 2y+1 và 2x-1 là Ư(5)
*2y+1=5,2x-1=1 => x=1, y=2
*2y+1=1; 2x-1 = 5 => x=3; y=0
*2y+1=-5; 2x-1=-1 => x=0; y=-3
*2y+1=-1; 2x-1=-5 => x=-2; y=-1
Vậy (x,y) thuộc {(1;2);(3;0); (0; -3); (-2; -1)}
\(x-y+2xy=3\)
\(\Leftrightarrow x+2xy-y=3\)
\(\Leftrightarrow x\left(1+2y\right)-\frac{1}{2}\left(1+2y\right)+\frac{1}{2}=3\)
\(\Leftrightarrow\left(1+2y\right)\left(x-\frac{1}{2}\right)=3-\frac{1}{2}\)
\(\Leftrightarrow\left(1+2y\right)\left(x-\frac{1}{2}\right)=\frac{5}{2}\)
\(\Leftrightarrow2.\left(1+2y\right)\left(x-\frac{1}{2}\right)=\frac{5}{2}.2\) (Nhân mỗi vế với 2)
\(\Rightarrow\left(1+2y\right)\left(2x-1\right)=5\)
\(\Rightarrow1+2y\)và \(2x-1\)\(\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng giá trị sau:
Vậy \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;2\right);\left(-2;-1\right);\left(0;-3\right)\right\}\)