Cho x và y là hai số dương có tổng bằng 1. Tìm GTNN của biểu thức:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{z}\left(\dfrac{x+y}{xy}\right)=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(x+y+z\right)^2}=16\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)
Áp dụng BĐT Cô-si cho 2 số thực dương \(\dfrac{xy}{z}\) và \(\dfrac{yz}{x}\) có:
\(\dfrac{xy}{z}+\dfrac{yz}{x}\) \(\ge\) 2\(\sqrt{\dfrac{xy}{z}\cdot\dfrac{yz}{x}}\) = 2\(\sqrt{y^2}\) = 2y (1)
Tương tự: \(\dfrac{yz}{x}+\dfrac{zx}{y}\ge2z\) (2)
\(\dfrac{xy}{z}+\dfrac{zx}{y}\ge2x\) (3)
Từ (1); (2); (3)
\(\Rightarrow\) \(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2zx}{y}\ge2x+2y+2z\)
\(\Leftrightarrow\) 2\(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\) \(\ge\) 2(x + y + z)
\(\Leftrightarrow\) \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\ge x+y+z=10\)
Hay PMin = 10
Dấu "=" xảy ra \(\Leftrightarrow\) x = y = z = \(\dfrac{10}{3}\)
Vậy ...
Chúc bn học tốt!
Đặt \(A=\frac{x+y}{xyz}\)
Theo bài ra có ta có các số nguyên dương x,y,z có tổng =1
=> x+y+z=1
=> \(\left[\left(x+y\right)+z\right]^2=1\). Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)ta có:
\(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)
Nhân 2 vế với số dương \(\frac{x+y}{xyz}\)được
\(\frac{x+y}{xyz}\ge\frac{4z\left(x+y\right)^2}{xyz}\ge\frac{4x\cdot4xy}{xyz}=16\)
MinA=16 <=> \(\hept{\begin{cases}x+y=1\\x=y\\x+y+z=1\end{cases}\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2}}\)
Vậy MinA =16 đạt được khi \(x=y=\frac{1}{4};z=\frac{1}{2}\)
Ta có: \(1=x+y\ge2\sqrt{xy}\)
\(\Rightarrow4xy\le1\)
\(S=\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{1}=\frac{4}{\left(x+y\right)^2}+1=\frac{4}{1}+1=5\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM - MG ta có :
\(xy\)\(\le\)\(\frac{\left(x+y\right)^2}{4}\)\(=\)\(\frac{1}{4}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel :
\(S\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{3}{4xy}\)\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{2}{4xy}\)\(-\)\(\frac{1}{4xy}\)
\(=\)\(\frac{1}{x^2+y^2}\)\(-\)\(\frac{1}{2xy}\)\(-\)\(\frac{1}{4xy}\)\(\ge\)\(\frac{\left(1-1\right)^2}{x^2-y^2-2xy}\)\(-\)\(\frac{1}{4xy}\)
\(\ge\)\(\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)\(-\)\(\frac{1}{4.\frac{1}{4}}\)\(=\)\(4\)\(-\)\(1\)\(=\)\(5\)
Xảy ra khi \(x\)\(=\)\(y\)\(=\)\(\frac{1}{2}\)
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
Lần sau tìm nơi gõ công thức và gõ hẳn ra nhé e <3
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{2^2}{2}\right)^2}{2}=...\text{(tự tính nhé :)}\)
Khi \(x=y=1\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2
\(A\ge\dfrac{\left(1+2\right)^2}{x+y}=9\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
\(\frac{18}{x}+\frac{2}{y}=1\)
\(\Rightarrow\frac{1}{2}=\frac{9}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{2}=\frac{3^2}{x}+\frac{1}{2}\ge\frac{\left(3+1\right)^2}{x+y}\)
\(\Rightarrow\frac{1}{2}\ge\frac{16}{x+y}\)
\(\Rightarrow x+y\ge32\)
\(\text{Dấu '' = '' xảy ra khi:}\)
\(\orbr{\begin{cases}\frac{3}{x}=\frac{1}{y}\\x+y=32\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3y\\3y+y=32\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=24\\y=8\end{cases}}\)
đk : \(ĐK:x\ne0;y\ne0\)
Chia cả 2 vế cho 2, ta được: \(\frac{9}{x}+\frac{1}{y}=\frac{1}{2}\)
Áp dụng bất đẳng thức Svac-sơ : \(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
\(\rightarrow VT\ge\frac{\left(3+1\right)^2}{x+y}\)\(\leftrightarrow\frac{1}{2}\ge\frac{\left(3+1\right)^2}{x+y}=\frac{16}{x+y}\)
\(\Rightarrow x+y\ge32\)
Dấu ''='' xảy ra \(\leftrightarrow\)\(\hept{\begin{cases}x=24\\y=8\end{cases}}\)
Vậy : \(Min\left(...\right)=32\leftrightarrow\hept{\begin{cases}x=24\\y=8\end{cases}}\)
Bạn muốn tìm GTNN của biểu thức nào vậy?