j) (x + 2).(3 - x) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
j) (x + 2).(3 - x) = 0
TH1: x + 2 = 0
x = 0 - 2
x = (-2)
TH2: 3 - x = 0
x = 3 - 0
x = 3
⇒ Vậy x = (-2) hoặc x = 3.
m) (x + 5).(x.2 - 4) = 0
TH1: x + 5 = 0
x = 0 - 5
x = (-5)
TH2: x.2 - 4 = 0
x.2 = 0 + 4
x.2 = 4
x = 4 : 2
x = 2
⇒ Vậy x = (-5) hoặc x = 2.
g) 0,3x + 0,6x = 9
x.(0,3 + 0,6) = 9
x. 0,9 = 9
x = 9 : 0,9
x = 10
j) (x + 2)(3 - x) = 0
x + 2 = 0 hoặc 3 - x = 0
*) x + 2 = 0
x = 0 - 2
x = -2
*) 3 - x = 0
x = 3
Vậy x = -2; x = 3
m) (x + 5)(x.2 - 4) = 0
x + 5 = 0 hoặc x.2 - 4 = 0
*) x + 5 = 0
x = 0 - 5
x = -5
*) x.2 - 4 = 0
2x = 0 + 4
2x = 4
x = 4 : 2
x = 2
Vậy x = -5; x = 2
g) 0,3x + 0,6x = 9
0,9x = 9
x = 9 : 0,9
x = 10
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
a, \(3x\left(2x-3\right)-7\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\3x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{3}\end{cases}}\)
Vậy ....
b, \(x^2\left(x+1\right)+x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x = 0 hoặc x = -1
\(3x\left(2x-3\right)-7\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x-7\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-7=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{7}{3}\right\}\)
\(\lim\limits_{x\rightarrow0}\dfrac{2\left(\sqrt{3x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\dfrac{6x}{x\left(\sqrt{3x+1}+1\right)}=\lim\limits_{x\rightarrow0}\dfrac{6}{\sqrt{3x+1}+1}=3\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-2\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x-2\right)=-3\)
\(\Rightarrow I-J=6\)
bạn viết rõ đề ra nhé
a, \(\left|3x+1\right|-x-5=0\Leftrightarrow\left|3x+1\right|=x+5\)ĐK : \(x\ge-5\)
TH1 : \(3x+1=x+5\Leftrightarrow x=2\)( tm )
TH2 : \(3x+1=-x-5\Leftrightarrow x=-\dfrac{3}{2}\)( tm )
Trả lời:
j, ( x + 1 )2 - ( 2x - 1 )2 = 0
<=> ( x + 1 - 2x + 1 ) ( x + 1 + 2x - 1 ) = 0
<=> ( 2 - x ) 3x = 0
<=> 2 - x = 0 hoặc 3x = 0
<=> x = 2 hoặc x = 0
Vậy x = 2; x = 0 là nghiệm của pt.
k, Sửa đề: 8x3 + 12x - 1 = 6x2
<=> 8x3 + 12x - 1 - 6x2 = 0
<=> ( 2x )2 - 3.x2.2 + 3.x.22 - 13 = 0
<=> ( 2x - 1 )3 = 0
<=> 2x - 1 = 0
<=> 2x = 1
<=> x = 1/2
Vậy x = 1/2 là nghiệm của pt.
l, x3 + 15x2 + 75x + 125 = 0
<=> x3 + 3.x2.5 + 3.x.52 + 53 = 0
<=> ( x + 5 )3 = 0
<=> x + 5 = 0
<=> x = - 5
Vậy x = - 5 là nghiệm của pt.
`@` `\text {Ans}`
`\downarrow`
`c)`
`( 34 - 2x ) . ( 2x - 6 ) = 0`
`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
Vậy, `x \in {17; 3}`
`d)`
`( 2019 - x ) . ( 3x - 12 ) =0` `?`
`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
Vậy, `x \in {2019; 4}`
`e) `
`57 . ( 9x - 27 ) = 0`
`=>`\(9x-27=0\div57\)
`=> 9x - 27 = 0`
`=> 9x = 27`
`=> x = 27 \div 9`
`=> x = 3`
Vậy, `x = 3`
`f)`
`25 + ( 15 - x ) = 30`
`=> 15 - x = 30 - 25`
`=> 15 - x = 5`
`=> x = 15 -5 `
`=> x = 10`
Vậy, `x = 10`
`g) `
`43 - ( 24 - x ) = 20`
`=> 24 - x = 43 - 20`
`=> 24 - x = 23`
`=> x = 24 - 23`
`=> x = 1`
Vậy, `x = 1`
`h) `
`2 . ( x - 5 ) - 17 = 25`
`=> 2 ( x - 5) = 25+17`
`=> 2 ( x - 5) = 42`
`=> x - 5 = 42 \div 2`
`=> x - 5 = 21`
`=> x = 21 + 5`
`=> x = 26`
Vậy, `x = 26`
`i)`
`3 . ( x + 7 ) - 15 = 27`
`=> 3(x + 7) = 27 + 15`
`=> 3(x + 7) = 42`
`=> x +7 = 42 \div 3`
`=> x + 7 = 14`
`=> x = 14 - 7`
`=> x = 7`
Vậy, `x = 7`
`j)`
`15 + 4 . ( x - 2 ) = 95`
`=> 4(x - 2) = 95 - 15`
`=> 4(x - 2) = 80`
`=> x - 2 = 80 \div 4`
`=> x - 2 = 20`
`=> x = 20 + 2`
`=> x = 22`
Vậy, `x = 22`
`k)`
`20 - ( x + 14 ) = 5`
`=> x + 14 = 20 - 5`
`=> x + 14 = 15`
`=> x = 15 - 14`
`=> x = 1`
Vậy, `x = 1`
`l) `
`14 + 3 . ( 5 - x ) = 27`
`=> 3(5 - x) = 27 - 14`
`=> 3(5 - x) = 13`
`=> 5 - x = 13 \div 3`
`=> 5 - x = 13/3`
`=> x = 5- 13/3`
`=> x = 2/3`
Vậy, `x = 2/3.`
`@` `\text {Kaizuu lv uuu}`
j) (x + 2).(3 - x) = 0
TH1: x + 2 = 0
x = 0 - 2
x = (-2)
TH2: 3 - x = 0
x = 3 - 0
x = 3
⇒ Vậy x = (-2) hoặc x = 3.
Bài này Thầy giải cho em lúc sáng rồi mà