Cho tu giac ABCD, co goc A+C=180, AB<AD ,AC la tia phan giac cua goc BAD
CM tam giac DBC can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các góc trong 1 tứ giác là 360 độ nên => A+C=18-;
=>Tia phân giác góc A đồng thời là tia phân giác góc C;
Xét tam giác ABC và tam giác ADC có:
2 góc A tia phân giác = nhau;
Chung cạnh Ac ;
2 góc C của tia phân giác bằng nhau ;
=> Tam giác ABC= tam giác ADC.... => CB=CD
Xét tứ giác ABCD có:
góc DAB = góc ABC (gt)
=> tứ giác ABCD là hình thang cân (dhnb)
a) Xét tam giác DAB và tam giác ABC có:
AD = BC (gt)
AC = BD (t/c hình thang cân)
cạnh AB chung
=> tam giác DAB đồng dạng với tam giác ABC (c.c.c)
b)phần đầu mik chứng minh tứ giác ABCD là hình thang cân rồi nên sẽ có 2 góc kề một đáy bằng nhau. Bạn có thể ghi theo suy nghĩ của bạn cũng được. Phần c) cũng vậy!!!!
Xét tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(132^0+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
Ta có : \(\widehat{B}=\widehat{C}-72^0\)
=> \(\widehat{C}-72^0+\widehat{C}+\widehat{D}=228^0\)
=> \(2\widehat{C}-72^0+\widehat{D}=228^0\)
Mà \(\widehat{D}=2\widehat{C}\)
=> \(2\widehat{C}-72^0+2\widehat{C}=228^0\)
=> \(4\widehat{C}=300^0\)
=> \(\widehat{C}=75^0\)(*)
Thay (*) vào \(\widehat{D}=2\widehat{C}=2\cdot75^0=150^0\)
Lại có : \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
=> \(\widehat{B}+75^0+150^0=228^0\)
=> \(\widehat{B}=3^0\)
P/S : Góc B nhỏ thế ?
hắt xì