K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=﴾1/1.2+1/3.4﴿+﴾1/5.6+...+1/99.100﴿
=7/12+﴾1/5.6+...+1/99.100﴿>7/12﴾1﴿
A=1‐1/2+1/3‐1/4+1/5‐1/6+...+1/99‐1/100
=﴾1+1/3+1/5+...+1/99﴿‐﴾1/2+1/4+..+1/100﴿
=﴾1+1/2+1/3+1/4+..+1/99+1/100﴿‐2﴾1/2+1/4+....+1/100﴿ ﴾ cộng thêm cả 2 vế với 1/2+1/4+..+1/100﴿
=﴾1+1/2+1/3+..+1/100﴿‐﴾1+1/2+..+1/50﴿
=1/51+1/52+..+1/100
dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=﴾1/51+1/52+..+1/60﴿+﴾1/61+1/62+..+1/70﴿+﴾1/71+1/72+..+1/80﴿+﴾1/81+..+1/90﴿+﴾1/91+..+1/100﴿
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6﴾2﴿
từ 1 và 2 =>đpcm

18 tháng 8 2017

\(S=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

Ta thấy \(\frac{1}{1.2}=\frac{1}{1.2};\frac{1}{3.4}< \frac{1}{2.3};\frac{1}{5.6}< \frac{1}{3.4};.....;\frac{1}{99.100}=\frac{1}{98.99}\)

Khi đó \(S=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-.....+\frac{1}{98}-\frac{1}{99}\)

\(B=1-\frac{1}{99}=\frac{98}{99}< \frac{5}{6}\)

Suy ra \(S< \frac{5}{6}\)

mình ko chắc , mới lên lớp 7 :v

11 tháng 7 2017

Bạn tham khảo nha:

https://olm.vn/hoi-dap/question/11068.html

29 tháng 6 2021

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

29 tháng 6 2021

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

11 tháng 4 2023

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\)+....+ \(\dfrac{1}{49.50}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\)\(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)

A = 1 - \(\dfrac{1}{50}\) < 1

A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\)+.....+ \(\dfrac{1}{49.50}\) < 1 ( đpcm)

11 tháng 7 2017

Ta có : S = 1.2 + 3.4 + 5.6 +.....+ (2n - 1).2n

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + (2n - 1)2n(2n + 1)

=> 3S = (2n - 1)2n(2n + 1)

=> 3S = 2n(2n2 - 1)

=> 3S = 4n3 - 2n

=> S = \(\frac{4n^3-2n}{3}\)