K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

Đặt $A=5^0+5^1+5^2+5^3+....+5^{2010}+5^{2011}$

$A=(5^0+5^1)+(5^2+5^3)+....+(5^{2010}+5^{2011})$

$=(1+5)+5^2(1+5)+...+5^{2010}(1+5)$
$=(1+5)(1+5^2+....+5^{2010})$
$=6(1+5^2+....+5^{2010})\vdots 6$

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

19 tháng 11 2022

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

Sửa đề: \(7^{52}+7^{51}-7^{50}\)

\(=7^{50}\left(7^2+7-1\right)=7^{50}\cdot55⋮55\)

31 tháng 3 2016

7755có tận cùng là 3

336có tận cùng là 9

nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5

15 tháng 8 2017

a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.

Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)

\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)

b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)

\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)

\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)

15 tháng 8 2017

câu a sai đề, bạn thử bấm máy xem chia hết ko

câu b

16^5 chia 33 dư 1

2^15 chia 33 dư 32

vậy 16^5 + 2^15 chia hết cho 33

20 tháng 6 2017

sai đề à cậu  76 + 75 - 74 

ta có ; 76 + 75 - 74

= 74(72 + 7 - 1) 

= 74.55 chia hết cho 55

20 tháng 6 2017

Sửa đề : \(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4\left(49+6\right)\)

\(=7^4\cdot55\)

7^4 x 55 chia hết cho 55 (đpcm)