Tìm các số nguyên x,y:
a) (7-2x) (y-3) =12
b) (2x-3) (y+1)=12
c)xy-3y=5
LÀM 1 CÂU CŨNG DC Ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Do x là số nguyên nên 2x là số chẵn
⇒ 7 - 2x là số lẻ
* TH1: 7 - 2x = -3 và y - 3 = -4
+) 7 - 2x = -3
2x = 7 + 3
2x = 10
x = 10 : 2
x = 5
+) y - 3 = -4
y = -4 + 3
y = -1
* TH2: 7 - 2x = -1 và y - 3 = -12
+) 7 - 2x = -1
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
+) y - 3 = -12
y = -12 + 3
y = -9
* TH3: 7 - 2x = 1 và y - 3 = 12
+) 7 - 2x = 1
2x = 7 - 1
2x = 6
x = 6 : 2
x = 3
+) y - 3 = 12
y = 12 + 3
y = 15
* TH4: 7 - 2x = 3 và y - 3 = 4
+) 7 - 2x = 3
2x = 7 - 3
2x = 4
x = 4 : 2
x = 2
+) y - 3 = 4
y = 4 + 3
y = 7
Vậy ta tìm được các cặp giá trị (x; y) thỏa mãn:
(5; -1); (4; -9); (3; 15); (2; 7)
\(\Leftrightarrow2xy+2x-3y-3=12\)
\(\Leftrightarrow y\left(2x-3\right)=-\left(2x-15\right)\)
\(\Leftrightarrow y=\dfrac{-\left(2x-3\right)+12}{2x-3}=-1+\dfrac{12}{2x-3}\) (1)
Để y nguyên thì \(12⋮2x-3\Rightarrow\left(2x-3\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow x=\left\{-\dfrac{9}{2};-\dfrac{3}{2};-\dfrac{1}{2};0;\dfrac{1}{2};1;2;\dfrac{5}{2};3;\dfrac{7}{2};\dfrac{9}{2};\dfrac{15}{2}\right\}\) Do x nguyên
\(\Rightarrow x=\left\{0;1;2;3\right\}\) Thay lần lượt các giá trị của x vào (1) để tìm các giá trị tương ứng của y
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
a, 2.3\(x+1\) + 38 = 23.52
2.3\(^{x+1}\) + 38 = 200
2.3\(^{x+1}\) = 200 - 38
2.3\(^{x+1}\) = 162
3\(^{x+1}\) = 162 : 2
3\(^{x+1}\) = 81
3\(^{x+1}\) = 34
\(x+1\) = 4
\(x\) = 3
b, 2\(^{x+1}\) + 4.2\(^x\) = 3.25
2\(^x\).(2 + 4) = 96
2\(^x\).6 = 96
2\(^x\) = 96 : 6
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
a, 3.(2\(x\) + 4) + 198 = (-3)2.10
3.(2\(x\) + 4) + 198 = 90
3.(2\(x\) + 4) = 90 - 198
3.(2\(x\) + 4) = - 108
2\(x\) + 4 = -108 : 3
2\(x\) + 4 = -36
2\(x\) = - 36 - 4
2\(x\) = - 40
\(x\) = -40 : 2
\(x\) = - 20
b, 2.(\(x\) + 7) - 6 = 18
2.(\(x\) + 7) = 18 + 6
2.(\(x\) + 7) =24
\(x\) + 7 = 24 : 2
\(x\) + 7 = 12
\(x\) = 12 - 7
\(x\) = 5
xy - 3y = 5
y(x - 3) = 5
* TH1: x - 3 = -5 và y = -1
+) x - 3 = -5
x = -5 + 3
x = -2 (nhận)
* TH2: x - 3 = -1 và y = -5
+) x - 3 = -1
x = -1 + 3
x = 2 (nhận)
* TH3: x - 3 = 1 và y = 5
+) x - 3 = 1
x = 1 + 3
x = 4 (nhận)
* TH4: x - 3 = 5 và y = 1
+) x - 3 = 5
x = 5 + 3
x = 8 (nhận)
Vậy ta tìm được các cặp giá trị (x; y) thỏa mãn:
(-2; -1); (2; -5); (4; 5); (8; 1)
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)