K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2023

Số số hạng của S:

20 - 0 + 1 = 21 (số)

Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)

= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3¹⁸.13

= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13

Vậy S ⋮ 13

27 tháng 12 2023

S= 1+3+32+33+34+...+319+320

S= (1+3+32) + (33+34+35) + ... + (318+319+320)

S= 13.1+ 32.(1+3+32) + 317.(1+3+32)

S= 13.1+32.13+317.13

S= 13.(1+32+317\(⋮\) 13

S\(⋮\) 13

Vậy S\(⋮\) 13

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

7 tháng 1 2022

S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36​.(1 + 3) + 38​.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)

18 tháng 12 2021

gải giúp mình với

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

12 tháng 8 2023

2S = 1 + 3 + 3² + 3³ + ... + 3¹¹

⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²

⇒ 4S = 6S -  2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)

= 3¹² - 1

= 531440

⇒ S = 531440 : 4

= 132860 ⋮ 10

Vậy S ⋮ 10