Cho tứ giác lồi ABCD, 2 cạnh đối AB va CD bằng nhau. Gọi M, N,P,Q, theo thứ tự là trung điểm của các đoạn thẳng AC,BD, AB, CD. Chứng minh BQ là đường trung trực của đoạn thẳng MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
học cách cm hình bình hành rồi nhỉ?
hình tự vẽ
nối BD
tam giác ABD có M tđ AB; Q tđ AD
=> MQ là đtb tam giác ABD
=> MQ // và = 1/2 BD (1)
cm tương tự với tam giác BCD => NP là đtb tam giác BCD
=> NP // và = 1/2 BD (2)
(1) và (2) => MQ // và = NP
=> MNPQ là hbh ( dhnb)
Xét ΔABD có P,N lần lượt là trung điểm của BA và BD
nên PN là đường trung bình
=>PN//AD và PN=AD/2(1)
Xét ΔACD có M,Q lần lượt là trung điểm của CA và CD
nên MQ là đường trung bình
=>MQ//AD và MQ=AD/2(2)
Từ (1) và (2) suy ra PN//MQ và PN=MQ
=>MPNQ là hình bình hành
Xét ΔABC có P,M lần lượt là trung điểm của AB và AC
nên PM là đường trung bình
=>PM=BC/2=AD/2=PN
=>MPNQ là hình thou
=>PQ là trung trực của MN
b: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
Đặt \(AB=CD=c\), \(BC=DA=a\) , \(AC=b\) và \(BD=d\)
Do N là trung điểm cạnh BD nên theo công thức tính độ dài đường trung tuyến, ta có :
\(AN^2=\frac{c^2+a^2}{2}-\frac{d^2}{4}\) và \(CN^2=\frac{a^2+c^2}{2}-\frac{d^2}{4}\)
Suy ra : \(NA^2-NC^2=0=MA^2-MC^2\)
Từ đó theo kết quả bài toán suy ra \(MN\perp AC\)
Lập luận tương tự ta cũng được \(MN\perp BD\)
Đặt \(\frac{AB}{CD}=k\)
Do AB // CD nên \(\frac{EA}{EC}=\frac{EB}{ED}=k\) và \(\frac{FA}{FD}=\frac{FB}{FC}=k\) (như hình vẽ)
Suy ra : \(\overrightarrow{EA}=-k\overrightarrow{EC}\), \(\overrightarrow{EB}=-k\overrightarrow{ED}\) , \(\overrightarrow{FA}=-k\overrightarrow{FD}\) và \(\overrightarrow{FB}=-k\overrightarrow{FC}\)
Do M là trung điểm AB và N là trung điểm CD nên :
\(2\overrightarrow{EM}=\overrightarrow{EA}+\overrightarrow{EB}=-k\overrightarrow{EC}-k\overrightarrow{ED}=-2\left(\overrightarrow{EC}+\overrightarrow{ED}\right)=-2k\overrightarrow{EN}\)
Suy ra \(\overrightarrow{EM}=k\overrightarrow{EN}\) (1)
Hoàn toàn tương tự cũng được \(\overrightarrow{FM}=k\overrightarrow{FN}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh