K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2021

\(y'=\tan x+\frac{x}{\cos^2x}\)

\(y''=\frac{1}{\cos^2x}+\frac{\cos^2-x.2\cos x.\left(-\sin x\right)}{\cos^4x}=\frac{2\cos^2x+2x.\sin x.\cos x}{\cos^4x}\)

\(VT=\frac{2x^2\left(\cos^2x+x\sin x.\cos x\right)}{\cos^4x}\)

\(VP=2\left(x^2+x^2\tan^2x\right)\left(1+x\tan x\right)\)

\(=\frac{2x^2\left(1+x\tan x\right)}{\cos^2x}=\frac{2x^2\left(\cos^2x+x\sin x.\cos x\right)}{\cos^4x}=VT\)

30 tháng 11 2023

Sửa đề: \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)

\(=x^2+mx^2+\left(-2m+2\right)x+m-3\)

\(=x^2+mx^2-2mx+2x+m-3\)

\(=m\left(x^2-2x+1\right)+x^2+2x-3\)

\(=m\left(x-1\right)^2+x^2+2x-3\)

Tọa độ điểm mà (Pm) luôn đi qua là:

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)

2 tháng 1 2023

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

20 tháng 4 2022

C

a: \(y'=\left[tan\left(e^x+1\right)\right]'=\dfrac{\left(e^x+1\right)'}{cos^2\left(e^x+1\right)}=\dfrac{e^x}{cos^2\left(e^x+1\right)}\)

b: \(y'=\left(\sqrt{sin3x}\right)'\)

\(=\dfrac{\left(sin3x\right)'}{2\sqrt{sin3x}}=\dfrac{3\cdot cos3x}{2\sqrt{sin3x}}\)

c: \(y=cot\left(1-2^x\right)\)

=>\(y'=\left[cot\left(1-2^x\right)\right]'\)

\(=\dfrac{-2}{sin^2\left(1-2^x\right)}\cdot\left(-2^x\cdot ln2\right)\)

\(=\dfrac{2^{x+1}\cdot ln2}{sin^2\left(1-2^x\right)}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,y=\left(u\left(x\right)\right)^2=\left(x^2+1\right)^2=x^4+2x^2+1\\ b,y'\left(x\right)=4x^3+4x,u'\left(x\right)=2x,y'\left(u\right)=2u\\ \Rightarrow y'\left(u\right)\cdot u'\left(x\right)=2u\cdot2x=4x\left(x^2+1\right)=4x^3+4x\)

Vậy \(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)

\(y=\dfrac{x+3}{x+2}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+2\right)-\left(x+3\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x-3}{\left(x+2\right)^2}=\dfrac{-1}{\left(x+2\right)^2}\)

=>C