Tìm x, y biết : \(\dfrac{3}{5}x=\dfrac{2}{3}y\) và \(x^2-y^2=38\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x}{5}=\dfrac{2y}{3}\Leftrightarrow\dfrac{3x}{5}.\dfrac{1}{6}=\dfrac{2y}{3}.\dfrac{1}{6}\Leftrightarrow\dfrac{3x}{30}=\dfrac{2y}{18}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{9}\Leftrightarrow\dfrac{x^2}{100}=\dfrac{y^2}{81}\)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{100}=\dfrac{y^2}{81}=\dfrac{x^2-y^2}{100-81}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=2.100=200\\y^2=2.81=162\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{200}\\y=\pm\sqrt{162}\end{matrix}\right.\)
\(\dfrac{3}{5}x=\dfrac{2}{3}y\Rightarrow\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{5}}\) và \(x^2-y^2=38\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{5}}=\dfrac{x^2}{\dfrac{4}{6}}=\dfrac{y^2}{\dfrac{6}{10}}=\dfrac{x^2+y^2}{\dfrac{4}{6}+\dfrac{6}{10}}=\dfrac{38}{\dfrac{19}{15}}=30\)
\(\dfrac{x}{\dfrac{2}{3}}=30\Rightarrow x=30.\dfrac{2}{3}=20\)
\(\dfrac{y}{\dfrac{3}{5}}=30\Rightarrow y=30.\dfrac{3}{5}=18\)
Vậy x=20 ; y=18
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
Ta có:\(\frac{3}{5}x=\frac{2}{3}y\)
\(\Leftrightarrow\left(\frac{3}{5}x\right)^2=\left(\frac{2}{3}y\right)^2\)
\(\Leftrightarrow\frac{9}{25}x^2=\frac{4}{9}y^2\left(2\right)\)
Mà \(x^2-y^2=38\Rightarrow x^2=38+y^2\left(1\right)\)
Lấy (1) thay vào (2) ta đc:\(\frac{9}{25}\left(38+y^2\right)=\frac{4}{9}y^2\)
\(\Leftrightarrow\frac{342}{25}+\frac{9}{25}y^2-\frac{4}{9}y^2=0\)
\(\Leftrightarrow\frac{19}{225}y^2=\frac{342}{25}\)
\(\Leftrightarrow\)\(y=\sqrt{162}\)
Ko bt có đúng ko mong bn kiểm tra lại rồi nói với mk