Chứng minh 1011.1012.1013 . .... . 2020 chia hết cho 21010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)
Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)
\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)
hay \(A⋮10\) (đpcm)
\(\text{#}Toru\)
\(\left(a+2020\right)\left(a+2021\right)\)
Là tích 2 số tự nhiên liên tiếp nên có một số chia hết cho 2
\(\Rightarrow\left(a+2020\right)\left(a+2021\right)⋮2\forall a\in N\)
2 số a+2020 và a+2021 là 2 số tự nhiên lt nên có tích chia hết cho 2
\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\\ S=\left(1+5^2+5^4+5^6\right)+...+5^{2014}\left(1+5^2+5^4+5^6\right)\\ S=\left(1+5^2+5^4+5^6\right)\left(1+...+5^{2014}\right)\\ S=16276\left(1+...+5^{2014}\right)⋮313\left(16276⋮313\right)\)