P = (với x > 0, x 1) giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\) (loại)
Vậy \(-1< x< 2\)
\(\left(x-2\right)\left(\frac{x+2}{3}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\\frac{x+2}{3}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\\frac{x+2}{3}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -2\end{cases}}\)
Đến đây bạn tự xét rồi Vậy nha
\(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{cases}\Rightarrow-1< x< 2\left(KTM\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\Rightarrow x=0;1}\)
ta có x^2-x+2
=x^2-2x.1/2+(1/2)^2-(1/2)^2+2
=(x-1/2)^2+7/4
ta có (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x (1)
7/4 lớn hơn 0 (2)
từ (1),(2) suy ra (x-1/2)^2+7/4 lớn hơn 0
vậy x^2-x+2 lớn hơn 0 với mọi x
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
\(=\left(x-y\right)^2+1\)
vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)
vậy ................
Đề kia bị dính vào nhau, các bạn nhìn ảnh cho rõ nhé
Đề hiển thị lỗi. Bạn xem lại nhé.