K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

y³ - 8 - 6y(y - 2)

= (y³ - 8) - 6y(y - 2)

= (y - 2)(y² + 2y + 4) - 6y(y - 2)

= (y - 2)(y² + 2y + 4 - 6y)

= (y - 2)(y² - 4y + 4)

= (y - 2)(y - 2)²

= (y - 2)³

y³ - 8 - 6y(y - 2)

= (y³ - 8) - 6y(y - 2)

= (y - 2)(y² + 2y + 4) - 6y(y - 2)

= (y - 2)(y² + 2y + 4 - 6y)

= (y - 2)(y² - 4y + 4)

= (y - 2)(y - 2)²

30 tháng 6 2017

x - (y-6y +9)

x- (y - 3)2

(x+y-3)(x-y+3)

30 tháng 6 2017

\(x^2-y^2+6y-9=x^2-\left(y^2-6y+9\right)\)

                                    \(=x^2-\left(y-3\right)^2\)

                                      \(=\left(x+y-3\right)\left(x-y+3\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

1.

PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$

$\Leftrightarrow (x+y)^2-(y+3)^2=0$

$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$

$\Leftrightarrow (x-3)(x+2y+3)=0$

$\Rightarrow x-3=0$ hoặc $x+2y+3=0$

Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.

Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

2. 

PT $\Leftrightarrow x^2=(y^2+2y+1)+12$

$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$

$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:

TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$

TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$

TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$

TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$

14 tháng 4 2022

a.\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{8}{x}+\dfrac{5}{y}=1\end{matrix}\right.\)

\(ĐK:x;y\ne0\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) 

hpt trở thành:

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{6}\\8a+5b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{18}\\b=\dfrac{1}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{18}\\\dfrac{1}{y}=\dfrac{1}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\) ( tm )

Vậy nghiệm hpt: \(\left\{{}\begin{matrix}x=18\\y=9\end{matrix}\right.\)

14 tháng 4 2022

b.\(\left\{{}\begin{matrix}\dfrac{x-1}{2}-y=1\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}+2x=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x-1+4x}{2}=\dfrac{4}{2}\\2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

28 tháng 2 2023

(2): =>(4x^2-1)(x^2-6x+9)<=0

=>(4x^2-1)(x-3)^2<=0

TH1: (4x^2-1)(x-3)^2=0

=>x=3 hoặc \(x\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

TH2: (4x^2-1)(x-3)^2<0

=>4x^2-1<0

=>-1/2<x<1/2

25 tháng 2 2021

x,y là số nguyên => x;y-2 \(\inƯ\left(3\right)=\left\{-3;-1;1;2\right\}\)

Ta có bảng

x-3-113
y-2-1-331
y1-153

Vậy (x;y)={(-3;1);(-1;-1);(1;5);(3;3)}