K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

a) (x - 2).3⁵ = 3⁷

x - 2 = 3⁷ : 3⁵

x - 2 = 3²

x - 2 = 9

x = 9 + 2

x = 11

b) x² - 2x = 0

x(x - 2) = 0

⇒ x = 0 hoặc x - 2 = 0

*) x - 2 = 0

x = 2

Vậy x = 0; x = 2

c) (2x - 1)² = 49

⇒ 2x - 1 = 7 hoặc 2x - 1 = -7

*) 2x - 1 = 7

2x = 7 + 1

2x = 8

x = 8 : 2

x = 4

*) 2x - 1 = -7

2x = -7 + 1

2x = -6

x = -6 : 2

x = -3

Vậy x = -3; x = 4

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

6 tháng 1 2016

a)2x-35=15

   2x=15+35

   2x=50

   x=50:2

   x=25

b)3x+17=2

   3x=2-17

   3x=-15

   x=-15:3

   x=-5

c)|x-1|=0

=>x-1=0=>x=0-1

=>x=-1

a)2x-35=15 

2x=15+35

2x=50

x=50:2

x=25

b)3x+17=2

3x=2-17

3x=-15

x=-15:3

x=-5

c)|x-1|=0

x-1=0

x=0+1

x=1

30 tháng 9 2016

a) \(\left(2x-1\right)^2-25=0\)

\(\left(2x-1\right)^2=0+25=25\)

\(\left(2x-1\right)^2=5^2=\left(-5\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}2x-1=5\\2x-1=-5\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}2x=6\\2x=-4\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-2\end{array}\right.\)

b) \(8x^3-50x=0\)

\(2x\left(4x^2-25\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}2x=0\\4x^2-25=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-\frac{5}{2}\end{array}\right.\end{array}\right.\)

 

a) Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)

\(\Rightarrow x^2+7;x^2-49\) khác dấu

*Trường hợp 1:

\(\left\{{}\begin{matrix}x^2+7< 0\\x^2-49>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2< -7\\x^2>49\end{matrix}\right.\)(loại)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x^2+7>0\\x^2-49< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2>-7\\x^2< 49\end{matrix}\right.\Leftrightarrow x\in\left\{0;-1;1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)

Vậy: \(x\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)

b) Ta có: (2x-1)(2y+1)=-35

\(\Leftrightarrow\)2x-1; 2y+1\(\in\)Ư(-35)

\(\Leftrightarrow\)2x-1; 2y+1\(\in\){1;-1;5;-5;7;-7;35;-35}

*Trường hợp 1:

\(\left\{{}\begin{matrix}2x-1=1\\2y+1=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\2y=-36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 2:

\(\left\{{}\begin{matrix}2x-1=-35\\2y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-34\\2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-17\\y=0\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 3:

\(\left\{{}\begin{matrix}2x-1=-1\\2y+1=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\2y=34\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=17\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 4:

\(\left\{{}\begin{matrix}2x-1=35\\2y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=-1\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 5:

\(\left\{{}\begin{matrix}2x-1=5\\2y+1=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\2y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 6:

\(\left\{{}\begin{matrix}2x-1=-7\\2y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 7:

\(\left\{{}\begin{matrix}2x-1=-5\\2y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)(thỏa mãn)

*Trường hợp 8:

\(\left\{{}\begin{matrix}2x-1=7\\2y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\2y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)

Vậy: x∈{1;-17;0;18;3;-3;-2;4} và y∈{-18;0;17;-1;-4;2;3;-3}

9 tháng 1 2019

a) (x - 2)(x + 1) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy...

9 tháng 1 2019

e) xy - 5x - 5y = 0

=> x(y - 5) - 5y = 0

=> x(y - 5) - 5(y - 5) - 25 = 0

=>(x - 5)(y - 5) = 25 = 1 . 25 = (-1) . (-25) = 5 . 5 = (-5). (-5)       (và ngược lại)

Lập bảng :

x - 5125-1-255-5
y - 5251-25-15-5
x6304-20100
y306-204 100

Vậy ...
 

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)