K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

Gọi d là UCLN(n;n+1)
Suy ra: n chia hết cho d; n+1 chia hết cho d (1)
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d  (2)
Từ (1) và (2) => d=+1
Vậy n/n+1 là phân số tối giản

17 tháng 8 2017

mơn bn nhìu nha

29 tháng 7 2018

\(9^{2n}=\left(9^2\right)^n=81^n=\overline{......1}\)

\(\Rightarrow9^{2n}-1=\overline{.....1}-1=\overline{....0}⋮2\text{ và }5\)

\(\Rightarrowđpcm\)

29 tháng 7 2018

9^2n =81^n có CSTC là 1 =. 9^2n-1 có CSTC là 0 => 9^2n-1 chia hết cho 2vaf 5

16 tháng 6 2018

Theo mình là đề bài sai.Giả sử nếu n = 2 thì biểu thức = 1.6-(-2).3 = 12 không chia hết cho 5

Theo mình phải là CHIA HẾT CHO 6

Câu này khá dễ bạn ạ

(n-1)(n+4)-(n-4)(n+1)

= (n^2+3n-4)-(n^2-3n-4)

=6n luôn chia hết cho 6 với n thuộc Z ^_^

Ukm. mik lỡ nhập đề bài sai sorry bạn nha!!!

cảm ơn bạn nhìu

22 tháng 3 2018

Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow\)\(\left(-3\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lại có : 

\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)

\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)

\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

ban oi ban co sai de ko


 

Dạ, ĐK: \(n,a\inℕ^∗\)bn nhé !

\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)

\(=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

Do đó : \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

8 tháng 6 2020

Mk cảm ơn bn nhé :))

7 tháng 4 2017

Giả sử \(ƯCLN\left(n,2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow2n+1-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,n\right)=1\)

Vậy \(ƯCLN\left(2n+1,n\right)=1\)với mọi \(n\in N\)

23 tháng 6 2019

a) Ta có : A = 1028 + 8 

                   = 100...0 + 8 (28 chữ số 0)

                   = 100...008 (27 chữ số 0)

Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008 

lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8

=> 1028 + 8 \(⋮\)8 (1)

Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)

=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0) 

=> 1028 + 8 \(⋮\)9(2)

Từ (1) và (2) ta có :

ƯCLN(8,9) = 1

=> 1028 + 8 \(⋮\)BCNN(8,9) 

=> 1028 + 8 \(⋮\)72

Ta có :

\(10^{28}+8=100...008\)(27 chữ số 0 )

Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)

Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)

17 tháng 3 2022

\(n=1\) không thỏa mãn.

17 tháng 3 2022

ab