K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

Xét tam giác vuông AHB có:

\(AH^2+BH^2=AB^2\\ 12^2+BH^2=20^2\\ BH^2=256\\ BH=16cm\)

\(=>BC=BH+CH=5+16=21cm\)

Xét tam giác AHC vuông tại H có:

\(AH^2+CH^2=AC^2\\ =>12^2+5^2=AC^2\\ =>AC^2=169\\ AC=13cm\)

2 tháng 3 2018

Vì AHC vuông

=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )

=> AC^2 = 144 + 25

=> AC^2 = 169 

=> AC = 13

2 tháng 3 2018

Áp dụng định lí Py-ta-go vào tam giác ABH ta được:

 \(AB^2=AH^2+BH^2\)

Mà AB=20cm; AH=12cm

\(\Rightarrow20^2=12^2+BH^2\)

\(\Rightarrow400=144+BH^2\)

\(\Rightarrow BH^2=400-144\)

\(\Rightarrow BH^2=256\)

\(\Rightarrow BH=16\)(do BH >0) (cm)

Có BH+HC=BC

Mà BH=16cm;HC=5cm

=> BC=16+5=21(cm)

Vậy BC=21cm

k cho mình nha

7 tháng 2 2016

Hình bé tự vẽ nhá.

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :

AH2 +BH2 =AB2

        AH= AB2 - BH2

        AH2 = 5- 32

=>.     AH2 = 16

         AH = 4 (cm)

Theo đề, có : AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

             HC = 8 - 3

            HC = 5 (cm)

Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :

AH2 + HC2 = AC2

4+ 52 = AC2

=> AC2 = 41

AC = \(\sqrt{41}\)

7 tháng 2 2016

Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;

AH2+BH2=AB2 

=>AH2=AB2-BH2=52-32

=>AH2=25-9=16

=>AH=+(-)4

mà AH>0 =>AH=4 cm

Lại có;

BH+HC=BC 

=>HC=BC-BH=8-3

=>HC=5 cm

Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:

AC2=AH2+HC2

=>AC2=42+52=16+25

=>AC2=41

=>AC=+(-)\(\sqrt{41}\)

Mà AC >0 =>AC=\(\sqrt{41}\)cm

Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm

3 tháng 2 2018

- Ta có tam giác ABC vuông tại H

Áp dụng định lí Pi-ta-go có:

\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)

Tương tự ta có:...(bn tự làm)

Tam giác AHC vuông tại H

=> cũng như trên

3 tháng 2 2018

Tự vẽ nhé

 Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:

   AH\(^2\)+ BH\(^2\)= AB\(^2\)

    AH\(^2\)\(AB^2-BH^2\)

   \(AH^2=5^2-3^2\)

\(=>AH^2=16\)

\(AH=4cm\)

Theo đề, ta có: AH vuông góc với BC

=> H thuộc BC

=> BH + HC = BC

 HC = 8  - 3

 HC=5 cm

Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:

      \(AH^2+HC^2=AC^2\)

        \(4^2+5^2=AC^2\)

=>   \(AC^2=41\)

=> \(AC=\sqrt{41}\)

12 tháng 6 2019

21 tháng 9 2023

a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:

\(AB^2=AH^2+HB^2\)

\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)

\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\) 

b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:

\(AC^2=AH^2+HC^2\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)

\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)

\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)

\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)