Cho đtr (O; R) và 1 điểm A nằm cách O 1 khoảng bằng 2R. Từ A vẽ các tt AB, AC vớiđtr (B, C là các tiếp điểm). đg thg vuông góc với OB tại O cắt AC tại N, đg thg vuông góc vớiOC tại O cắt AB tại Ma) CMR: AMON là hình thoib) Đthg MN là tt của đtr (O)c) Tính diện tích hình thoi...
Đọc tiếp
Cho đtr (O; R) và 1 điểm A nằm cách O 1 khoảng bằng 2R. Từ A vẽ các tt AB, AC với
đtr (B, C là các tiếp điểm). đg thg vuông góc với OB tại O cắt AC tại N, đg thg vuông góc với
OC tại O cắt AB tại M
a) CMR: AMON là hình thoi
b) Đthg MN là tt của đtr (O)
c) Tính diện tích hình thoi AMON
a: ta có: ON\(\perp\)OB
AB\(\perp\)OB
Do đó: ON//AB
=>ON//AM
Ta có: OM\(\perp\)OC
AC\(\perp\)OC
Do đó: OM//AC
=>OM//AN
Xét tứ giác OMAN có
OM//AN
ON//AM
Do đó: OMAN là hình bình hành
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>AO là phân giác của góc MAN
Hình bình hành OMAN có AO là phân giác của góc MAN
nên OMAN là hình thoi
b: Kẻ OH\(\perp\)MN tại H
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(\widehat{BOM}=120^0-90^0=30^0\)
Xét ΔMOA có MO=MA
nên ΔMOA cân tại M
=>\(\widehat{MOA}=\widehat{MAO}=30^0\)
Xét ΔOBM vuông tại B và ΔOHM vuông tại H có
OM chung
\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)
Do đó: ΔOBM=ΔOHM
=>OB=OH=R
Xét (O) có
OH là bán kính
MN\(\perp\)OH tại H
Do đó: MN là tiếp tuyến của (O)