chứng minh 2=3 bằng 1 phép tính 6.6=9.9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(A=3^2+3^2.2^2+3^2.3^2+3^2.4^2+...+3^2.30^2=\)
\(=3^2\left(1^2+2^2+3^2+...+30^2\right)\)
Đăt biểu thức trong dấu ngoặc là B
\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+30\left(31-1\right)=\)
\(=1.2+2.3+3.4+30.31-\left(1+2+3+...+30\right)=\)
\(C=1+2+3+...+30=\dfrac{30\left(1+30\right)}{2}=465\)
\(D=1.2+2.3+3.4+...+30.31\)
\(3D=1.2.3+2.3.3+3.4.3+...+30.31.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+30.31.\left(32-29\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-29.30.31+30.31.32=\)
\(=30.31.32\Rightarrow D=\dfrac{30.31.32}{3}=10.31.32\)
\(\Rightarrow A=3^2\left(C-D\right)=3^2\left(10.31.32-465\right)\)
b/
Đặt biểu thức là A
\(\dfrac{A}{2}=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{39-37}{37.39}=\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{37}-\dfrac{1}{39}=\)
\(=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{12}{39}\Rightarrow A=\dfrac{2.12}{39}=\dfrac{24}{39}=\dfrac{8}{13}\)
\(A=3.3+6.6+9.9+...+90.90\)
\(A=3^2\left(1+2^2+3^2+...+10^2\right)\)
\(A=9.\dfrac{10.\left(10+1\right)\left(2.10+1\right)}{6}\)
\(A=3.\dfrac{10.11.21}{2}\)
\(A=3465\)
ta có :
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
......................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
HC TỐT NHÉ ( NHỚ K CHO MK NHA , MỎI TAY LẮM ĐÓ )
6.6=9.9
2.3.2.3=3.3.3.3
2.(3.3)=3.(3.3)
2.9=3.9
vì có 2 số 9 nên bỏ cả 2
=> 2=3
mà 1+1=2 nên 1+1=3